Breaking News
March 18, 2019 - Fibromyalgia can be reliably detected in blood samples
March 18, 2019 - Legacy Pharmaceutical Packaging, LLC Issues Voluntary Nationwide Recall of Losartan Potassium Tablets, USP, 25mg, 50mg, And 100mg Due to The Detection of Trace Amounts Of N-Nitroso N-Methyl 4-Amino Butyric Acid (NMBA) Impurity Found in The Active Pharmaceutical Ingredient (API)
March 18, 2019 - Researchers identify early home and family factors that contribute to obesity
March 18, 2019 - Fate and festivity: Match Day 2019
March 18, 2019 - Study finds TAVR to be as good as open-heart surgery for patients at low surgical risk
March 18, 2019 - EU-funded project is developing new tools for diagnosing cancer
March 18, 2019 - Gluten, lactose, food dyes in pills could be causing side effects finds study
March 18, 2019 - Taking painkillers during pregnancy is not responsible for asthma risk in children, study shows
March 18, 2019 - Prediagnosis Psychiatric Care Linked to Worse Cancer Mortality
March 18, 2019 - Paris hospital halts stool study after donor deluge
March 18, 2019 - Partial oral antibiotic therapy shows efficacy and safety in patients with infectious endocarditis
March 18, 2019 - Olympus improves access to science education through BioBus collaboration
March 18, 2019 - Depression screening does not improve quality of life in heart attack patients
March 18, 2019 - Echocardiography may aid in patient selection for TMVR
March 18, 2019 - Are ‘Inactive’ Ingredients in Your Drugs Really So Harmless?
March 18, 2019 - Wearable technology can safely identify atrial fibrillation
March 18, 2019 - Scientists tackle rare retinal disease in unique research project
March 18, 2019 - Death By A Thousand Clicks
March 18, 2019 - Absorbable, antibiotic-eluting envelope can reduce rate of cardiac device infections
March 18, 2019 - Hormonal treatment associated with depression in men with prostate cancer
March 18, 2019 - Porvair Sciences launches reinforced 96-well deep round microplate
March 18, 2019 - Simplified catheter ablation could slash waiting lists for atrial fibrillation patients
March 18, 2019 - BFR therapy as part of rehabilitation following ACL surgery may slow bone loss
March 18, 2019 - A human model to test implants for cataract surgery
March 18, 2019 - New risk adjustment model could reduce financial penalty for safety net hospitals
March 18, 2019 - NHS cancer patients’ wait to start treatment worrying
March 18, 2019 - Inventiva Announces Results from Phase IIb Clinical Trial with Lanifibranor in Systemic Sclerosis
March 18, 2019 - Cologuard
March 18, 2019 - Researchers find evidence of prenatal environment tuning genomic imprinting
March 18, 2019 - Dolomite Bio launches novel Nadia product family for single-cell research
March 18, 2019 - Intellipharmaceutics Announces Resubmission of New Drug Application to the U.S. FDA for its Oxycodone ER
March 18, 2019 - Excessive gestational weight gain tied to maternal morbidity
March 18, 2019 - RCEM issues position statement on metrics to supplement four-hour standard target
March 17, 2019 - Noncontrast Brain MRI Effective for Monitoring Multiple Sclerosis
March 17, 2019 - Brain region plays key role in regulation of parenting behavior, study finds
March 17, 2019 - Natural speed limit on DNA replication sets pace for life’s first steps
March 17, 2019 - New research reveals overlooked impact of herbicide glyphosate on the environment
March 17, 2019 - Molecular patterns could help predict relapse risk in breast cancer patients
March 17, 2019 - Study confirms sensitivity of microbiological cultures for detecting cholera
March 17, 2019 - Scientists Spot Clues to Predicting Breast Cancer’s Return
March 17, 2019 - Scientists identify gene that keeps PTSD-like behavior at bay in female mice
March 17, 2019 - New method would allow doctors to detect earliest stages of cancers in the lymph nodes
March 17, 2019 - Cholesterol protein discovery raises hope for smarter drugs
March 17, 2019 - New insect medium delivers high viable cell density growth and protein yield
March 17, 2019 - Opioid crisis brings concerns about heart dangers
March 17, 2019 - Resistance Training May Prevent Type 2 Diabetes Progression
March 17, 2019 - Bioluminescence sensors make new approaches to drug discovery possible
March 17, 2019 - New FDA Rules Aim to Keep Kids From Flavored E-Cigarettes
March 17, 2019 - Vitamin B3 analogue boosts production of blood cells
March 17, 2019 - Government cuts to stop smoking services have detrimental impact on public health
March 17, 2019 - Common tool to assess potential adoptive parents lags behind societal changes
March 17, 2019 - Patients’ own cells could be the key to treating Crohn’s disease
March 17, 2019 - Diagnostic delays common in inflammatory bowel disease
March 17, 2019 - Study uncovers dramatic differences in the brains of Hispanics with dementia
March 17, 2019 - Study describes epigenetic loss that changes how cells obtain energy from cancer
March 16, 2019 - Active Bathing in Non-ICU Setting Does Not Cut Infections
March 16, 2019 - How the immune system maintains a healthy gut microbiota
March 16, 2019 - Bacteria ‘trap’ could help in the fight against antimicrobial resistance
March 16, 2019 - Hospital work environment associated with all EHR usability outcomes
March 16, 2019 - Study unravels mystery behind how the brain encodes time when forming long-term memories
March 16, 2019 - Light physical activity may lower risk of cardiovascular disease in older women
March 16, 2019 - USP15 enzyme could potentially lead to new treatments for breast, pancreatic cancer
March 16, 2019 - After Chinese Infant Gene-Editing Scandal, U.S. Health Officials Join Call for a Ban
March 16, 2019 - PACS1 syndrome – Genetics Home Reference
March 16, 2019 - Researchers discover an unexpected organization of antimicrobial molecules that amplifies immune response
March 16, 2019 - With New Study, Era of Open-Heart Surgery for Aortic Stenosis May be Ending
March 16, 2019 - Dolomite Bio introduces high throughput sNuc-Seq protocol for its Nadia Instrument
March 16, 2019 - New course prepares materials scientists for biomedical testing
March 16, 2019 - Finding clues to a functional HIV cure
March 16, 2019 - People with chronic periodontitis have higher risk for dementia
March 16, 2019 - Few heart care recommendations are based on rigorous study
March 16, 2019 - Colorectal cancer diagnosed at early age is distinct from that in older patients
March 16, 2019 - Researchers use MRI and AI techniques at birth to predict cognitive development at age 2
March 16, 2019 - Discarding information from the brain linked to more mental effort, finds study
March 16, 2019 - OTA International supplement provides current snapshot and forward look at global trauma systems
March 16, 2019 - NIH trial to track outcomes of liver transplantation from HIV+ donors to HIV+ recipients
March 16, 2019 - Apple Heart Study shows how wearable technology can help detect heart problem
March 16, 2019 - Researchers determine factors that cause stress development in the human body
March 16, 2019 - Elderly Men Undertreated for Osteoporosis
March 16, 2019 - People with chronic pain are coping with the help of Pinterest, new study reveals
New 3D ‘organ on a chip’ could be used to develop new treatments for disease

New 3D ‘organ on a chip’ could be used to develop new treatments for disease

image_pdfDownload PDFimage_print

Researchers have developed a three-dimensional ‘organ on a chip’ which enables real-time continuous monitoring of cells, and could be used to develop new treatments for disease while reducing the number of animals used in research.

The device, which incorporates cells inside a 3D transistor made from a soft sponge-like material inspired by native tissue structure, gives scientists the ability to study cells and tissues in new ways. By enabling cells to grow in three dimensions, the device more accurately mimics the way that cells grow in the body.

The researchers, led by the University of Cambridge with colleagues from France, Greece and Saudi Arabia, say their device could be modified to generate multiple types of organs – a liver on a chip or a heart on a chip, for example – ultimately leading to a body on a chip which would simulate how various treatments affect the body as whole. Their results are reported in the journal Science Advances.

Traditionally, biological studies were (and still are) done in petri dishes, where specific types of cells are grown on a flat surface. While many of the medical advances made since the 1950s, including the polio vaccine, have originated in petri dishes, these two-dimensional environments do not accurately represent the native three-dimensional environments of human cells, and can in fact lead to misleading information and failures of drugs in clinical trials.

“Two-dimensional cell models have served the scientific community well, but we now need to move to three-dimensional cell models in order to develop the next generation of therapies,” said Dr Róisín Owens from Cambridge’s Department of Chemical Engineering and Biotechnology, and the study’s senior author.

“Three-dimensional cell cultures can help us identify new treatments and know which ones to avoid, if we can accurately monitor them,” said Dr Charalampos Pitsalidis, a postdoctoral researcher in the Department of Chemical Engineering & Biotechnology, and the study’s first author.

Now, 3D cell and tissue cultures are an emerging field of biomedical research, enabling scientists to study the physiology of human organs and tissues in ways that have not been possible before. However, while these 3D cultures can be generated, technology that accurately assesses their functionality in real time has not been well-developed.

“The majority of the cells in our body communicate with each other by electrical signals, so in order to monitor cell cultures in the lab, we need to attach electrodes to them,” said Dr Owens. “However, electrodes are pretty clunky and difficult to attach to cell cultures, so we decided to turn the whole thing on its head and put the cells inside the electrode.”

The device which Dr Owens and her colleagues developed is based on a ‘scaffold’ of a conducting polymer sponge, configured into an electrochemical transistor. The cells are grown within the scaffold and the entire device is then placed inside a plastic tube through which the necessary nutrients for the cells can flow. The use of the soft, sponge electrode instead of a traditional rigid metal electrode provides a more natural environment for cells, and is key to the success of organ on chip technology in predicting the response of an organ to different stimuli.

Other organ on a chip devices need to be completely taken apart in order to monitor the function of the cells, but since the Cambridge-led design allows for real-time continuous monitoring, it is possible to carry out longer-term experiments on the effects of various diseases and potential treatments.

“With this system, we can monitor the growth of the tissue, and its health in response to external drugs or toxins,” said Pitsalidis. “Apart from toxicology testing, we can also induce a particular disease in the tissue, and study the key mechanisms involved in that disease or discover the right treatments.”

The researchers plan to use their device to develop a ‘gut on a chip’ and attach it to a ‘brain on a chip’ in order to study the relationship between the gut microbiome and brain function as part of the IMBIBE project, funded by the European Research Council.

The researchers have filed a patent for the device in France.

Source:

https://www.cam.ac.uk/research/news/3d-organ-on-a-chip-could-accelerate-search-for-new-disease-treatments

Tagged with:

About author

Related Articles