Breaking News
January 20, 2019 - New study takes first step toward treating endometriosis
January 20, 2019 - Researchers find how GREB1 gene promotes resistance to prostate cancer treatments
January 20, 2019 - Replacing Sitting Time With Activity Lowers Mortality Risk
January 20, 2019 - A simple, inexpensive intervention makes birth safer for moms and babies in parts of Africa
January 19, 2019 - New anti-inflammatory compound acts as ‘surge protector’ to reduce cancer growth
January 19, 2019 - Significant flaws found in recently released forensic software
January 19, 2019 - New Leash on Life? Staying Slim Keeps Pooches Happy, Healthy
January 19, 2019 - Men and women remember pain differently
January 19, 2019 - Rising air pollution linked with increased ER visits for breathing problems
January 19, 2019 - Study uses local data to model food consumption patterns among Seattle residents
January 19, 2019 - The brain’s cerebellum plays role in controlling reward and social behaviors, study shows
January 19, 2019 - Relationship between nurse work environment and patient safety
January 19, 2019 - Pioneering surgery restores movement to children paralyzed by acute flaccid myelitis
January 19, 2019 - Genetic variants linked with risk tolerance and risky behaviors
January 19, 2019 - New research provides better understanding of our early human ancestors
January 19, 2019 - First-ever tailored reporting guidance to improve patient care and outcomes
January 19, 2019 - 4.6 percent of Massachusetts residents have opioid use disorder
January 19, 2019 - New study suggests vital exhaustion as risk factor for dementia
January 19, 2019 - New antibiotic discovery heralds breakthrough in the fight against drug-resistant bacteria
January 19, 2019 - Ural Federal University scientists synthesize a group of multi-purpose fluorophores
January 19, 2019 - Researchers identify new therapeutic target in the fight against chronic liver diseases
January 19, 2019 - Preparation, characterization of Soyasapogenol B loaded onto functionalized MWCNTs
January 19, 2019 - FDA Approves Ontruzant (trastuzumab-dttb), a Biosimilar to Herceptin
January 19, 2019 - Tobacco use linked with higher use of opioids and sedatives
January 19, 2019 - Study delves deeper into developmental dyslexia
January 19, 2019 - Anti-vaccination movement one of the top health threats in 2019 says WHO
January 19, 2019 - Newly developed risk score more effective at identifying type 1 diabetes
January 19, 2019 - Highly effective protocol to prepare cannabis samples for THC/CBD analysis
January 19, 2019 - Prinston Pharmaceutical Inc. Issues Voluntary Nationwide Recall of Irbesartan and Irbesartan HCTZ Tablets Due to Detection of a Trace Amount of Unexpected Impurity, N-Nitrosodiethylamine (NDEA) in the Products
January 19, 2019 - How does solid stress from brain tumors cause neuronal loss, neurologic dysfunction?
January 19, 2019 - $14.7 million partnership to supercharge vaccine development
January 19, 2019 - Ian Fotheringham receives Charles Tennant Memorial Lecture award
January 19, 2019 - Brain vital signs detect neurophysiological impairments in players with concussions
January 19, 2019 - Lack of job and poor housing conditions increased likelihood of people attending A&E
January 19, 2019 - Novel targeted drug delivery system improves conventional cancer treatments
January 19, 2019 - Rutgers study finds gene responsible for spread of prostate cancer
January 19, 2019 - Complications Higher Than Expected for Invasive Lung Tests
January 19, 2019 - 3-D printed implant promotes nerve cell growth to treat spinal cord injury
January 19, 2019 - Automated texts lead to improved outcomes after total knee or hip replacement surgery
January 19, 2019 - Poor cardiorespiratory fitness could increase risk of future heart attack, finds new study
January 19, 2019 - Drinking soft drinks while exercising in hot weather may increase risk of kidney disease
January 19, 2019 - Formlabs 3D prints anatomical models
January 19, 2019 - Heart-Healthy Living Also Wards Off Type 2 Diabetes
January 19, 2019 - Teaching Kids to Be Smart About Social Media (for Parents)
January 19, 2019 - Metabolite produced by gut microbiota from pomegranates reduces inflammatory bowel disease
January 19, 2019 - Researchers examine how spray from showers and toilets expose us to disease causing bacteria
January 19, 2019 - Behavioral experiments confirm that additional neurons improve brain function
January 19, 2019 - New study compares performance of real-time infectious disease forecasting models
January 19, 2019 - Obesity can be risk factor for developing renal cell carcinoma, confirms study
January 19, 2019 - New regulation designs on cigarette packs direct smokers’ attention to health warnings
January 19, 2019 - QIAGEN receives first companion diagnostic approval in Japan
January 19, 2019 - Study explores role of Dunning-Kruger effect in anti-vaccine attitudes
January 19, 2019 - Newly identified subset of immune cells may be key to fighting chronic inflammation
January 19, 2019 - New immune response regulators discovered
January 18, 2019 - Poor blood oxygenation during sleep predicts chance of heart-related death
January 18, 2019 - First international consensus on the diagnosis and management of fibromuscular dysplasia
January 18, 2019 - Rapid resistance gene sequencing technology can hasten identification of antibiotic-resistant bacteria
January 18, 2019 - Researchers develop artificial enzymatic pathway for synthesizing isoprenoids in E. coli
January 18, 2019 - Scientists advise caution in immunotherapy research
January 18, 2019 - How children across the world develop language
January 18, 2019 - Columbia Medical Student Receives McDonogh Scholarship
January 18, 2019 - Secretive ‘Rebate Trap’ Keeps Generic Drugs For Diabetes And Other Ills Out Of Reach
January 18, 2019 - Plant based diet could be the best option for the planet says commission
January 18, 2019 - New conservation practice could reduce nitrogen from agricultural drainage, study shows
January 18, 2019 - UIC researchers receive $1.7 million NCI grant to study Southeast Asian fruit
January 18, 2019 - New study determines the fate of DNA derived from genetically modified food
January 18, 2019 - Scientists develop new gene therapy that prevents axon destruction in mice
January 18, 2019 - Study finds critically low HPV vaccination rates among younger adolescents in the U.S.
January 18, 2019 - Brain cells involved in memory play key role in reducing future eating behavior
January 18, 2019 - Risk for Conversion of MS Varies With Different Therapies
January 18, 2019 - Investigational cream may help patients with inflammatory skin disease
January 18, 2019 - Medical school news office receives six writing awards | News Center
January 18, 2019 - County By County, Researchers Link Opioid Deaths To Drugmakers’ Marketing
January 18, 2019 - Research reveals risk for developing more than one mental health disorder
January 18, 2019 - Scientists discover a dramatic pattern of bone growth in female mice
January 18, 2019 - Study finds link between lengthy periods of undisturbed maternal sleep and stillbirths
January 18, 2019 - New nuclear medicine method could improve detection of primary and metastatic melanoma
January 18, 2019 - Combination therapy shows high efficacy in treating people with leishmaniasis and HIV
January 18, 2019 - Health Tip: Don’t Ignore Changes in Skin Color
January 18, 2019 - Dietary Recommendations for Healthy Children
Scientists reverse a sensory impairment in mice with autism

Scientists reverse a sensory impairment in mice with autism

image_pdfDownload PDFimage_print
“We’re trying to identify early brain processes that will impact behaviors in children when they are older,” said Anubhuti Goel, a postdoctoral researcher in neurology at UCLA and first author of the study. Credit: University of California, Los Angeles

Using a genetic technique that allows certain neurons in the brain to be switched on or off, UCLA scientists reversed a sensory impairment in mice with symptoms of autism, enabling them to learn a sensory task as quickly as healthy mice.

The findings, which appear in the journal Nature Neuroscience, offer an intriguing glimpse of a potential strategy to help people with autism make sense of what their eyes see.

In humans, the ability to perceive visual information is critical to learning of all kinds, including the interpretation of social cues. In children with autism, avoiding eye contact and struggling to understand people’s feelings may be rooted in how their brains process visual information.

“The focus in autism has been trying to tackle social impairment. But if there is a deficit in learning due to being unable to process certain kinds of sensory input, it affects your development,” said Anubhuti Goel, a postdoctoral researcher in neurology at UCLA and the study’s first author. “We’re trying to identify early brain processes that will impact behaviors in children when they are older.”

For this experiment, Goel and colleagues at UCLA used mice with a similar mutation in the FMR1 gene as humans with fragile X syndrome, a genetic condition that is the most commonly inherited cause of autism in humans. Mice with the mutation share a number of autism symptoms with people with fragile X syndrome, including anxiety, reduced social interaction and an overreaction to sensory stimuli such as texture and sound.

The researchers trained mice on a visual discrimination task, where the goal for the mice was to lick a drop of water in response to a specific visual cue on a screen. A pattern of parallel, black-and-white lines slanting a certain way signified the presence of a water drop; slanted a different way, there was no water drop. If the mice took too long to decide, the water drop disappeared—vacuumed up by the scientists.

On average, normal control mice mastered the strategy for getting water in about three days, whereas the mice with autism typically required five to nine days.

By recording brain activity in the mice, researchers found that the visual cortex of the fragile X syndrome mice, or FXS mice, had fewer and less finely tuned neurons called pyramidal cells. These excitatory neurons—the “gas pedal” in the brain—found in rodents, monkeys and humans, are responsible for perceiving the orientation of visual information, for example, the angle of the lines in the experiment. In addition, researchers found reduced activity in parvalbumin neurons, which are inhibitory neurons—the “brake pedal”—that work in concert with pyramidal cells, kicking them into gear and “tuning” them to respond to specific, or more general, bits of visual information.

The researchers wondered if they could prod those parvalbumin cells into working harder, which would in turn stimulate the pyramidal cells.

They targeted the parvalbumin cells with a genetic technique called DREADD, which stands for Designer Receptors Exclusively Activated by Designer Drugs. They injected the fragile X syndrome mice with a virus carrying the genes for these special designer receptors; once inside the mouse’s parvalbumin cells, the virus generates the DREADD receptors. Next, a drug administered intravenously reached those receptors and activated the parvalbumin cells.

Once the fragile X syndrome mice with the designer receptors received the drug, they could learn the visual discrimination task as quickly as their healthy counterparts did. The impact of the designer drug lasted for three to four hours.

“These experiments shed light on the brain circuit problems behind those difficulties in autism, and hint at directions we can pursue for treatment in the future,” Goel said.

Goel’s next step will be figuring out what happens in the visual discrimination task with sensory distractors, such as flashing lights or loud sounds. Many autistic children and adults are unable to tune out such distractors, which could contribute to poor performance in school and anxiety in social settings. Fragile X syndrome mice, too, have sensory over-reactivity, which could impede their learning.


Explore further:
Drug may reverse imbalance linked to autism symptoms

More information:
Anubhuti Goel et al. Impaired perceptual learning in a mouse model of Fragile X syndrome is mediated by parvalbumin neuron dysfunction and is reversible, Nature Neuroscience (2018). DOI: 10.1038/s41593-018-0231-0

Journal reference:
Nature Neuroscience

Provided by:
University of California, Los Angeles

Tagged with:

About author

Related Articles