Breaking News
November 14, 2018 - Study shows novel strategy to reduce breast cancer bone metastasis
November 14, 2018 - Empowering the NHS through Industry Partnerships
November 14, 2018 - One size does not fit all in obesity treatment, study finds
November 14, 2018 - Seeking ways to prevent ‘secondary cataracts’
November 14, 2018 - Change Within the Eye May Be Early Warning for Macular Degeneration
November 14, 2018 - Study of 500,000 people clarifies the risks of obesity
November 14, 2018 - Ultrasound releases drug to alter activity in targeted brain areas in rats | News Center
November 14, 2018 - Umass Amherst researchers battle against youth suicide in rural Alaska Native communities
November 14, 2018 - Cancer stem cells depend on amino acid metabolism, and it’s proving to be their Achilles’ heel
November 14, 2018 - Epigenetic link found between prenatal exposure to maternal smoking and offspring’s cardio-metabolic health
November 14, 2018 - Meditation, music may change biomarkers of cellular aging and Alzheimer’s disease in older adults
November 14, 2018 - Multidisciplinaryresearch teams selected to study age-related brain disorders
November 14, 2018 - The Current issue of “The view from here” is concerned with Informatics
November 14, 2018 - Researchers identify tool to help transgender women have a more authentic voice
November 14, 2018 - Four faculty members appointed to endowed professorships | News Center
November 13, 2018 - Research finds strongest evidence yet that obesity causes depression
November 13, 2018 - Researchers compare stools of breastfed and formula-fed infants
November 13, 2018 - Entasis Therapeutics Announces Zoliflodacin Phase 2 Results Published in The New England Journal of Medicine
November 13, 2018 - Gene changes driving myopia reveal new focus for drug development
November 13, 2018 - $6 million grant to support study of preeclampsia, atherosclerosis links | News Center
November 13, 2018 - Beneficial gut microbes metabolize high-fiber diet to improve heart health in mouse model
November 13, 2018 - Excessive use of social media through visual postings linked to increase in narcissistic traits
November 13, 2018 - Study finds why obesity both fuels cancer growth and helps immunotherapy to kill tumors
November 13, 2018 - Women prefer and invest more in daughters, while men favor sons
November 13, 2018 - With hospitalization losing favor, judges order outpatient mental health treatment
November 13, 2018 - Transgenic rat model may provide new insights into cerebral amyloid angiopathy
November 13, 2018 - Study identifies factors tied to greater risk of advanced liver disease in cystic fibrosis patients
November 13, 2018 - Risk of blindness among premature babies with low levels of blood platelets
November 13, 2018 - A new strategy for combatting antibiotic-resistant infections
November 13, 2018 - Study aims to find which outreach method is more effective at improving cancer screening rates
November 13, 2018 - Insufficient sleep duration linked with unhealthy lifestyle profile among children
November 13, 2018 - IIASA researchers introduce new, simple measure for human wellbeing
November 13, 2018 - Magnetic nanosprings used as targeted drug delivery agents for anticancer therapy
November 13, 2018 - Scientists examine FCMs containing silver nanoparticles
November 13, 2018 - Failed DNA repair triggers chromosomal chaos
November 13, 2018 - Study shows new emerging role of osteopontin in HCV-related hepatocellular carcinoma
November 13, 2018 - Food insecurity during pregnancy linked to severity of neonatal abstinence syndrome
November 13, 2018 - Majority of Americans are concerned about health threat posed by antibiotic resistance
November 13, 2018 - Addition of Elotuzumab Ups PFS in Refractory Multiple Myeloma
November 13, 2018 - Study finds women with pregnancy-related nausea, vomiting use marijuana more
November 13, 2018 - Lethal heart rhythm more likely to be found in patients with common heart failure
November 13, 2018 - Study provides new clues to origin and development of multiple sclerosis
November 13, 2018 - Climate change could pose threat to male fertility
November 13, 2018 - Researchers discover how mitochondria deploy a powerful punch against disease-causing bacteria
November 13, 2018 - AHA: Traumatic Childhood Could Increase Heart Disease Risk in Adulthood
November 13, 2018 - Feeling the Burn? | NIH News in Health
November 13, 2018 - Women’s birth canals in Kenya, Korea, Kansas not the same: study
November 13, 2018 - Fecal microbiota transplantation effective against ICI-associated colitis
November 13, 2018 - New physical activity guidelines released that urge people to “move more”
November 13, 2018 - Angiotensin receptor blockers improve sodium excretion in blacks
November 13, 2018 - New project seeks to address alarming injury rate in youth footballers
November 13, 2018 - Fish oil or omega 3 fatty acid supplements can prevent heart attacks finds study
November 13, 2018 - The Human Heart-in-a-Jar That Could One Day Replace Animal Testing
November 13, 2018 - Treat patients’ partners without a doctor visit
November 13, 2018 - Belgian beer landscape mapped using scientific insights
November 13, 2018 - ‘Master key’ gene has links to both ASD and schizophrenia
November 13, 2018 - Gladstone scientists gain new insights into the aging brain
November 13, 2018 - Drug therapy can improve outcomes for acutely ill heart patients
November 13, 2018 - Three landmark studies provide better understanding of sudden cardiac arrest
November 13, 2018 - Cholesterol control revised in the latest AHA/ACC guidelines
November 13, 2018 - Vulnerable young teenagers urgently need better sex education, say researchers
November 13, 2018 - Breakthrough research reveals how deadly pneumococcus avoids immune defenses
November 13, 2018 - Researchers discover possible path forward in preventing cancers tied to two viruses
November 13, 2018 - Wishes can help pediatric patients to get better over time
November 13, 2018 - Janssen Reports Positive Topline Results for FLAIR Phase 3 Study of a Novel, Long Acting Injectable Two-Drug Regimen for the treatment of HIV-1
November 13, 2018 - Experimental compound reduces Gulf War illness-like behavior in mice
November 13, 2018 - Small-stature in rainforest populations may be linked to cardiac adaptations
November 13, 2018 - Study shows how pneumococci challenge the immune system
November 13, 2018 - Simple cysts can be safely ignored, study finds
November 13, 2018 - First fully personalized tissue implant engineered from patient’s own materials and cells
November 13, 2018 - FDA Approves Keytruda (pembrolizumab) in Combination with Carboplatin and Either Paclitaxel or Nab-Paclitaxel for the First-Line Treatment of Patients with Metastatic Squamous Non-Small Cell Lung Cancer (NSCLC)
November 13, 2018 - Scientists take big step toward finding non-addictive painkiller
November 13, 2018 - Diabetes medication reduces risk of heart failure hospitalization
November 13, 2018 - Achieving high follow-up rates for violently injured patient population is feasible
November 13, 2018 - Shortage of specific gene ‘silencing’ molecules linked with pediatric low-grade gliomas
November 13, 2018 - Abx-Resistant Enterobacteriaceae Tied to Clinical Failure in UTI
November 13, 2018 - US approves first new type of flu drug in 2 decades
November 13, 2018 - Is zinc the link to how we think? Some evidence, and a word of warning
November 13, 2018 - Dispelling taboos, Michelle Obama talks IVF and miscarriage
November 13, 2018 - Medical experts discuss future challenges of healthcare at HSMA’s inaugural conference
‘DNA origami’ triggers tissue generation in early development | News Center

‘DNA origami’ triggers tissue generation in early development | News Center

image_pdfDownload PDFimage_print

A developing embryo faces the difficult task of concocting myriad tissue types — including skin, bone and the specialized glop that makes up our internal organs and immune system — from essentially the same set of ingredients: immature, seemingly directionless stem cells. Although some of the important players that provide direction to this transformation are known, it’s not been clear exactly how they work together to accomplish this feat.

Now, researchers at the Stanford University School of Medicine have identified a key regulatory hierarchy in which proteins called morphogens control gene expression by directing the looping of DNA in a cell. This looping brings master regulators called transcription factors in contact with specific sets of genes necessary to make particular tissue types. 

Varying concentrations and types of morphogens cause different looping events, directing different cell fates much in the same way that railroad workers control the direction and eventual destination of a train car by connecting different portions of track.  

Although the researchers were particularly interested in learning more about how to stimulate the production of a type of skin cell called keratinocytes to treat epidermolysis bullosa, a blistering skin disease with few treatments, they believe their findings may have implications for the derivation of other therapeutically useful tissue types. 

“For the first time, we were able to see how morphogens and master transcriptional regulators work together to make specific cell types,” said Anthony Oro, MD, PhD, professor of dermatology. “We’ve always wondered how a transcription factor required for the production of vastly different cell types knows which genes to make into proteins in which situation. Now we’ve answered that question: morphogens help the master transcription factors hook up to the right targets. Changing the concentration or type of morphogen, or even the order in which they are added to a cell, causes dramatically different outcomes.”

A paper describing the research was published online Nov. 5 in Nature Genetics. Oro, who is also the Eugene and Gloria Bauer Professor, is the senior author. Postdoctoral scholar Jillian Pattison, PhD; former postdoctoral scholar Sandra Melo, PhD; and graduate student Samantha Piekos share lead authorship.

Putting body parts in the right place

Morphogens are responsible for the body patterning that ensures, for example, that a fly’s wing ends up on its thorax rather than the top of its head. They were the first important class of proteins identified in the early days of developmental biology, in part because their effect on a developing embryo is so dramatic. Subsequent studies showed that they work through the process of diffusion and can have different effects based on their concentration throughout the embryo. Cells that are near other cells making and releasing the morphogen are exposed to a much higher concentration than those farther away; as waves of varying morphogens overlap and interact, they direct the proper placement of legs, wings and the head, for example. 

Soon, researchers also identified other types of proteins called master transcriptional regulators that bind to DNA to control the expression of specific genes throughout the cell. But they quickly learned that each of these regulators could spark the formation of vastly different cell types, and it was unclear how each regulator knew to favor the development of one tissue type over another. 

Oro and his colleagues were studying the effect of two well-known morphogens involved in skin development — BMP4 and retinoic acid — on the activity of a master transcriptional regulator called p63 that is responsible for tissue types as diverse as skin, thymus and the lining of the esophagus. 

In particular, they were interested in the process by which human embryonic stem cells can be triggered to develop into keratinocytes to form sheets of skin to repair the blistering and open wounds seen in people with epidermolysis bullosa. Previous attempts, although somewhat successful, yielded impure populations of cells that are difficult to use therapeutically. In search of a more reliable way to produce the cells, they wondered if they could generate keratinocytes by exposing the stem cells to a defined combination of morphogens and transcription factors. To do so, however, they experimented with when, and how much, of each component to add and watched how the cells reacted.  

Complex, synergistic feedback loop 

The researchers found that, although p63 is required to make skin cells from embryonic stem cells, it is not sufficient. In the absence of BMP4 or retinoic acid, nothing happens, even if p63 is snuggly bound to its landing pad on the DNA. However, when BMP4 or retinoic acid is added, the DNA conformation changes, and p63 begins transcribing skin-specific genes. This dependence of p63 activity on the presence of morphogens was unexpected and telling.

Making specific cell types is not a random event, and we can work to harness and accelerate this process to generate all kinds of transplantable tissues.

“Basically, p63 binds to the DNA, and then sits back and waits, twiddling its thumbs, until it is connected to specific genes by the morphogen-caused folding,” Oro said. “Or sometimes the DNA folds weeks or months in advance, and this foreshadowing sets up a particular differentiation plan, poising the chromatin to assume a specific fate when the transcriptional regulator is added.”

Additionally, the researchers discovered that exposing the stem cells to retinoic acid and BMP together also triggered the expression of p63, indicating a complex and synergistic feedback loop that controls skin development. 

“Now we have the tools necessary to understand how the DNA folds and unfolds in response to changing conditions,” Oro said. “Deciphering this chromatin origami is critical to learning how to make specific cell types for use in tissue replacement therapies. We know now that certain combinations and concentrations of morphogens cause the cells to fold their DNA in a certain way, while another stimulates the DNA to assume an entirely different conformation. Making specific cell types is not a random event, and we can work to harness and accelerate this process to generate all kinds of transplantable tissues.”

Additional Stanford authors are technicians Jessica Torkelson, Elizaveta Bashkirova and Hanson Hui Zhen; postdoctoral scholars Lingjie Li, PhD, and Xiaomin Bao, PhD; graduate students Adam Rubin and Maxwell Mumbach; undergraduates Eric Liaw, Daniel Alber and Charlotte Rajasingh; informatician Gautam Shankar; professor of dermatology and of genetics Howard Chang, MD, PhD; and professor and chair of dermatology Paul Khavari, MD, PhD. 

The research was supported by the California Institute for Regenerative Medicine, the National Institutes of Health (grants F32AR070565, AR45192, P50HG007735 and 5R00AR065490), the EB Research Partnership and the Howard Hughes Medical Institute

Stanford’s Department of Dermatology also supported the work.

Tagged with:

About author

Related Articles