Breaking News
November 16, 2018 - Many RA patients’ pain related to central nervous system
November 16, 2018 - Changes in Himalayan gut microbiomes linked to diet
November 16, 2018 - Inhibition of prostaglandin E2 enhances ability to combat infectious colitis
November 16, 2018 - Chronic dry eye can slow reading rate and disrupt day to day tasks
November 16, 2018 - Researchers develop new drug molecule that inhibits inflammation
November 16, 2018 - Dementia symptoms peak in winter and spring, study finds
November 16, 2018 - Stanford tobacco researcher weighs in on JUUL
November 16, 2018 - Increasing omega-3 fatty acid intake during pregnancy reduces risk of premature birth, review finds
November 16, 2018 - Researchers find no link between infants waking up at night and later developmental problems
November 16, 2018 - Both parents and children agree about confidential medical services
November 16, 2018 - FDA warns against use of unapproved pain medications with implanted pumps
November 16, 2018 - Precision medicine-based approach to slow or reverse biologic drivers of Alzheimer’s disease
November 16, 2018 - Study provides new insight into norovirus outbreaks, may help guide efforts to develop vaccines
November 16, 2018 - Inexpensive, portable air purifier could help protect the heart from pollution
November 16, 2018 - New 15-minute scan could help diagnose brain damage in babies up to two years old
November 16, 2018 - Deep brain stimulation not effective for treating early Alzheimer’s
November 16, 2018 - Traditional chemotherapy superior to new alternative for oropharyngeal cancers | News Center
November 16, 2018 - What This Pond Protist Does With Its Genome Will Astound You
November 15, 2018 - Researchers develop tool that speeds up analysis and publication of biomedical data
November 15, 2018 - Scientists identify mechanism used by lung cancer cells to obtain glucose
November 15, 2018 - Abnormalities in development of the brain could be involved in onset of autism, finds new study
November 15, 2018 - Soy protein equally effective as animal protein in building muscle strength
November 15, 2018 - American Academy of Pediatrics, Nov. 2-6
November 15, 2018 - Dopamine drives early addiction to heroin
November 15, 2018 - Variance in gut microbiome in Himalayan populations linked to dietary lifestyle | News Center
November 15, 2018 - Reducing Cardiovascular Disease: The Amish Way
November 15, 2018 - King’s researchers launch charter to guide organizations to engage abuse survivors in research
November 15, 2018 - Enable Injections enters into development agreements with UCB and Apellis Pharmaceuticals
November 15, 2018 - TGen North collaborates with NARBHA Institute to advance human health
November 15, 2018 - Researchers discover molecular basis for therapeutic actions of an African folk medicine
November 15, 2018 - Human Cell Atlas study of early pregnancy shows how mother’s immune system is modified
November 15, 2018 - New guidelines for detecting and managing sarcopenia to be launched in the UK
November 15, 2018 - Researchers explore role of dietary composition on energy expenditure
November 15, 2018 - Elsevier launches Entellect™ Platform, unlocking value by creating AI-ready life sciences data
November 15, 2018 - Now that cannabis is legal in Canada, let’s use it to tackle the opioid crisis
November 15, 2018 - In the Spotlight: At the intersection of tech, health, and ethics
November 15, 2018 - Traditional Glaucoma Test Can Miss Severity of the Disease
November 15, 2018 - Researchers directly connect activities of genes with instinctive behavior in male cichlids
November 15, 2018 - Salk researchers report new methods to identify AD drug candidates with anti-aging properties
November 15, 2018 - St. Jude Hospital announces availability of largest collections of leukemia samples
November 15, 2018 - Attenua Announces First Patient Treated in Phase 2 Clinical Trial in Chronic Cough with Bradanicline
November 15, 2018 - Designing a novel cell-permeable peptide chimera to promote wound healing
November 15, 2018 - NEI investigators combine two imaging modalities to view the retina in unprecedented detail
November 15, 2018 - Determining how hearts develop to better understand congenital heart defects
November 15, 2018 - Maverick immune cells can act independently to identify and kill cancer cells, finds research
November 15, 2018 - Advanced AI and big data methods to tackle dementia
November 15, 2018 - Report reveals increase in pancreatic cancer death rates across Europe
November 15, 2018 - Luxia Scientific announces availability of its gut microbiome test in Luxembourg
November 15, 2018 - New diabetes drugs linked to increased risk of lower-limb amputation and ketoacidosis
November 15, 2018 - New approach targets matrix surrounding neurons to protect neurons after stroke
November 15, 2018 - Lilly Submits New Drug Application to the FDA for Lasmiditan for Acute Treatment of Migraine
November 15, 2018 - Heart failure patients shouldn’t stop meds even if condition improves: study
November 15, 2018 - Parents and carers of people with diabetes experience emotional or mental health problems
November 15, 2018 - RetiPharma secures funding to develop new peptide drug for treating degenerative eye disorders
November 15, 2018 - Breakthrough research could lead to a new wave of cancer-fighting antibodies
November 15, 2018 - Mylan and Biocon launch new insulin glargine biosimilar in the UK
November 15, 2018 - For wildfire safety, only particular masks guard against toxic particulate matter
November 15, 2018 - New study of tribe shows influence of Western diet and lifestyle on blood pressure
November 15, 2018 - Scientists harness power of natural killer cells to treat children with neuroblastoma
November 15, 2018 - Investigating foodborne disease outbreak in Bosnia and Herzegovina based on simulation game
November 15, 2018 - Recommendations Issued for Management of Bradycardia
November 15, 2018 - Benefit unclear due to a lack of suitable studies
November 15, 2018 - TAMEST recognizes UT Southwestern’s Ralph DeBerardinis for changing our understanding of cancer
November 15, 2018 - Researchers discover key factors behind intestinal inflammation in CVID patients
November 15, 2018 - CityU develops first microarrayed 3D neuronal culture platform
November 15, 2018 - Expert suggests ways to control uncomfortable vaginal symptoms in diabetic women
November 15, 2018 - New edition of Red Journal focuses on roles of imaging in radiation oncology
November 15, 2018 - Doctors Aren’t Promoting Breastfeeding’s Cancer-Protection Benefit
November 15, 2018 - Collection of demonstration projects highlights value of patient engagement in research
November 15, 2018 - Technique to ‘listen’ to a patient’s brain during tumour surgery
November 15, 2018 - Seven-year-old returns to life as a “normal, healthy child” following bone marrow transplant
November 15, 2018 - AMSBIO expands range of high quality FFPE cancer cell line controls
November 15, 2018 - Marijuana use by kidney donors has no effect on transplant outcomes
November 15, 2018 - Exploring NMR Spectroscopy Applications through Interesting Infographics
November 15, 2018 - Chapman University wins additional $2.9 million NIH grant to study Alzheimer’s disease
November 15, 2018 - Microgel powder reduces infection and promotes healing
November 15, 2018 - Suicidal patients with prescribed access to psychotropic drugs should be closely monitored
November 15, 2018 - Nitric oxide-releasing technology shows potential to reduce healing time of diabetic foot ulcers
November 15, 2018 - Mass shootings may trigger unnecessary blood donations
November 15, 2018 - From heart disease to cancer: New study tracks shift of county death rates
New research explains how large virus shells are formed

New research explains how large virus shells are formed

image_pdfDownload PDFimage_print

A virus, the simplest physical object in biology, consists of a protein shell called the capsid, which protects its nucleic acid genome — RNA or DNA. The capsid can be cylindrical or conical in shape, but more commonly it assumes an icosahedral structure, like a soccer ball.

Capsid formation is one of the most crucial steps in the process of viral infection. If the virus is small, the capsid forms spontaneously. Larger spherical viruses, however, such as the herpes simplex virus or infectious bursal disease virus, need the assistance of naturally produced “scaffolding proteins,” which serve as a template guiding the capsid’s formation. How these large viral shells assemble into highly symmetric structures is not well understood.

A team of physicists and a virologist, led by a scientist at the University of California, Riverside, has now published a research paper in the Proceedings of the National Academy of Sciences explaining how large virus shells are formed. Their work can also be used to explain how large spherical crystals form in nature.

This understanding may help researchers interrupt viruses’ formation, containing the spread of viral diseases.

Relying on a theory called the continuum elasticity theory, the researchers studied the growth of large spherical capsids. They showed that the template guides the formation of the capsid’s protein subunits – the individual building blocks of the shell — in a way that is error-free and results, ultimately, in a highly symmetric, stable icosahedral structure.

“As the spherical structure grows, we see deep potential wells — or affinities — at mathematically specified locations that later become the vertices of the icosahedral structure,” said Roya Zandi, a professor of in the UCR Department of Physics and Astronomy, who led the research project. “In the absence of this template provided by the scaffolding proteins, the protein subunits often assemble into smaller, less stable structures.”

The study includes computer simulations and complex mathematics — specifically, topology, which is the mathematical study of the properties of a geometric figure or solid that are not changed by stretching or bending. It explains at a fundamental level what role the mechanical properties of building blocks and scaffolding proteins play in the formation of capsids. For large capsids to assume stable icosahedral structures, the protein subunits need to have specific physical properties. Further, an interaction between the protein subunits and a template is necessary, the researchers posit.

An icosahedron is a geometrical structure with 12 vertices, 20 faces, and 30 sides. An official soccer ball is a kind of icosahedron, called truncated icosahedron; it has 32 panels cut into the shape of 20 hexagons and 12 pentagons. It has 60 vertices and 90 edges. The pentagons are separated from each other by hexagons. All icosahedral structures, regardless of size, must have only 12 pentagons.

Zandi explained an icosahedron by invoking the Thomson Problem, which states that point charges placed on the surface of a unit sphere will minimize the total energy of the system. Solutions to the problem place each point charge in such a way that its nearest neighbors are as far away as possible.

“If you have a spherical conductor and you put 12 electrons on it, they will want to be as far as possible from each other,” she said. “They end up on the vertices of an icosahedron. Given this knowledge, when a virus shell grows, then, based on the theory of elasticity, you will need at least 12 defective points, called disclinations. Imagine if you had to wrap a sheet of paper around a sphere. You would be forced to fold the paper at certain points for it to assume the spherical shape. These are points of disclination, and they cannot be avoided. If you were to make a spherical shell using small triangles, you would need to make 12 pentagons. Without 12 pentagons, a spherical shape is not possible.”

Zandi stressed that to attack viruses more effectively a solid understanding of how they form is required, which can inform researchers of better ways to interrupt their formation and thus contain the spread of viral diseases.

“When a virus is large, how do the protein subunits know how to arrange themselves to form the most stable shell possible — an icosahedral one?” she added. “Where should the first disclination appear? And what about the next one? How can thousands of protein subunits join together and form icosahedral structures with such precision and symmetry? And what is the role of scaffolding proteins? Why can large stable shells not form without scaffolding proteins? These questions guided our research.”

Zandi explained that each protein subunit has a bending energy, meaning that a subunit prefers to meet another subunit at a certain angle. For a small icosahedral structure, this angle is small and acute. But to form a large icosahedral structure or capsid, this angle is large and obtuse, and requires the assistance provided by scaffolding proteins. Without this assistance, the protein subunits would form an endless long tube because that effort requires less energy.

“We show now that this tendency is thwarted by the scaffolding proteins, which force the protein subunits to bend slightly, buckle up and form 12 pentagons, which then leads to the formation of an icosahedral structure,” Zandi said. “Our study proves that without this scaffolding, it is impossible to form a large highly stable icosahedral shell.”

Viruses are the best nano-containers, Zandi said. They can be used to deliver drugs to specific targets in the body because they are especially adept at reaching cells. For example, viruses can be made to transport cargo, such as genomes and drugs, for therapeutic purposes to cancer cells.

“Anti-assembly drugs may be more efficient than other drugs because viral fitness is in particular sensitive to mutations at specific assembly interfaces,” Zandi said. “Indeed, small molecules have been recently designed that prohibit replication of certain viruses by similar mechanisms.”

Viruses do not breathe, metabolize, or grow. But they do reproduce. The simplest virus has a shell of 60 protein subunits. Three asymmetric subunit proteins occupy each triangular face, and all of the 60 subunits are equivalent to one another. For complex viruses, the number of subunits is a multiple of 60.

Source:

https://news.ucr.edu/articles/2018/11/02/physicists-explain-how-large-spherical-viruses-form

Tagged with:

About author

Related Articles