Breaking News
May 3, 2019 - Vaping and Smoking May Signal Greater Motivation to Quit
May 3, 2019 - Dementia looks different in brains of Hispanics
May 3, 2019 - Short-Staffed Nursing Homes See Drop In Medicare Ratings
May 3, 2019 - Study of teens with eating disorders explores how substance users differ from non-substance users
May 3, 2019 - Scientists develop new video game that may help in the study of Alzheimer’s
May 3, 2019 - Arc Bio introduces Galileo Pathogen Solution product line at ASM Clinical Virology Symposium
May 3, 2019 - Cornell University study uncovers relationship between starch digestion gene and gut bacteria
May 3, 2019 - How to Safely Use Glucose Meters and Test Strips for Diabetes
May 3, 2019 - Anti-inflammatory drugs ineffective for prevention of Alzheimer’s disease
May 3, 2019 - Study tracks Pennsylvania’s oil and gas waste-disposal practices
May 3, 2019 - Creating a better radiation diagnostic test for astronauts
May 3, 2019 - Vegans are often deficient in these four nutrients
May 3, 2019 - PPDC announces seed grants to develop medical devices for children
May 3, 2019 - Study maps out the frequency and impact of water polo head injuries
May 3, 2019 - Research on Reddit identifies risks associated with unproven treatments for opioid addiction
May 3, 2019 - Good smells may help ease tobacco cravings
May 3, 2019 - Medical financial hardship found to be very common among people in the United States
May 3, 2019 - Researchers develop multimodal system for personalized post-stroke rehabilitation
May 3, 2019 - Study shows significant mortality benefit with CABG over percutaneous coronary intervention
May 3, 2019 - Will gene-editing of human embryos ever be justifiable?
May 3, 2019 - FDA Approves Dengvaxia (dengue vaccine) for the Prevention of Dengue Disease in Endemic Regions
May 3, 2019 - Why Tonsillitis Keeps Coming Back
May 3, 2019 - Fighting the opioid epidemic with data
May 3, 2019 - Maggot sausages may soon be a reality
May 3, 2019 - Deletion of ATDC gene prevents development of pancreatic cancer in mice
May 2, 2019 - Targeted Therapy Promising for Rare Hematologic Cancer
May 2, 2019 - Alzheimer’s disease is a ‘double-prion disorder,’ study shows
May 2, 2019 - Reservoir bugs: How one bacterial menace makes its home in the human stomach
May 2, 2019 - Clinical, Admin Staff From Cardiology Get Sneak Peek at Epic
May 2, 2019 - Depression increases hospital use and mortality in children
May 2, 2019 - Vicon and NOC support CURE International to create first gait lab in Ethiopia
May 2, 2019 - Researchers use 3D printer to make paper organs
May 2, 2019 - Viral infection in utero associated with behavioral abnormalities in offspring
May 2, 2019 - U.S. Teen Opioid Deaths Soaring
May 2, 2019 - Opioid distribution data should be public
May 2, 2019 - In the Spotlight: “I’m learning every single day”
May 2, 2019 - 2019 Schaefer Scholars Announced
May 2, 2019 - Podcast: KHN’s ‘What The Health?’ Bye-Bye, ACA, And Hello ‘Medicare-For-All’?
May 2, 2019 - Study describes new viral molecular evasion mechanism used by cytomegalovirus
May 2, 2019 - SLU study suggests a more equitable way for Medicare reimbursement
May 2, 2019 - Scientists discover first gene involved in lower urinary tract obstruction
May 2, 2019 - Researchers identify 34 genes associated with increased risk of ovarian cancer
May 2, 2019 - Many low-income infants receive formula in the first few days of life, finds study
May 2, 2019 - Global study finds high success rate for hip and knee replacements
May 2, 2019 - Taking depression seriously: What is it?
May 2, 2019 - With Head Injuries Mounting, Will Cities Put Their Feet Down On E-Scooters?
May 2, 2019 - Scientists develop small fluorophores for tracking metabolites in living cells
May 2, 2019 - Study casts new light into how mothers’ and babies’ genes influence birth weight
May 2, 2019 - Researchers uncover new brain mechanisms regulating body weight
May 2, 2019 - Organ-on-chip systems offered to Asia-Pacific regions by Sydney’s AXT
May 2, 2019 - Adoption of new rules drops readmission penalties against safety net hospitals
May 2, 2019 - Kids and teens who consume zero-calorie sweetened beverages do not save calories
May 2, 2019 - Improved procedure for cancer-related erectile dysfunction
May 2, 2019 - Hormone may improve social behavior in autism
May 2, 2019 - Alzheimer’s disease may be caused by infectious proteins called prions
May 2, 2019 - Even Doctors Can’t Navigate Our ‘Broken Health Care System’
May 2, 2019 - Study looks at the impact on criminal persistence of head injuries
May 2, 2019 - Honey ‘as high in sugars as table sugar’
May 2, 2019 - Innovations to U.S. food system could help consumers in choosing healthy foods
May 2, 2019 - FDA Approves Mavyret (glecaprevir and pibrentasvir) as First Treatment for All Genotypes of Hepatitis C in Pediatric Patients
May 2, 2019 - Women underreport prevalence and intensity of their own snoring
May 2, 2019 - Concussion summit focuses on science behind brain injury
May 2, 2019 - Booker’s Argument For Environmental Justice Stays Within The Lines
May 2, 2019 - Cornell research explains increased metastatic cancer risk in diabetics
May 2, 2019 - Mount Sinai study provides fresh insights into cellular pathways that cause cancer
May 2, 2019 - Researchers to study link between prenatal pesticide exposures and childhood ADHD
May 2, 2019 - CoGEN Congress 2019: Speakers’ overviews
May 2, 2019 - A new strategy for managing diabetic macular edema in people with good vision
May 2, 2019 - Sagent Pharmaceuticals Issues Voluntary Nationwide Recall of Ketorolac Tromethamine Injection, USP, 60mg/2mL (30mg per mL) Due to Lack of Sterility Assurance
May 2, 2019 - Screen time associated with behavioral problems in preschoolers
May 2, 2019 - Hormone reduces social impairment in kids with autism | News Center
May 2, 2019 - Researchers synthesize peroxidase-mimicking nanozyme with low cost and superior catalytic activity
May 2, 2019 - Study results of a potential drug to treat Type 2 diabetes in children announced
May 2, 2019 - Multigene test helps doctors to make effective treatment decisions for breast cancer patients
May 2, 2019 - UNC School of Medicine initiative providing unique care to dementia patients
May 2, 2019 - Nestlé Health Science and VHP join forces to launch innovative COPES program for cancer patients
May 2, 2019 - Study examines how our brain generates consciousness and loses it during anesthesia
May 2, 2019 - Transition Support Program May Aid Young Adults With Type 1 Diabetes
May 2, 2019 - Study shows how neutrophils exacerbate atherosclerosis by inducing smooth muscle-cell death
May 2, 2019 - Research reveals complexity of how we make decisions
Researchers discovered a new mechanism of action in a first-line drug for diabetes

Researchers discovered a new mechanism of action in a first-line drug for diabetes

The researchers demonstrated in cell cultures and in an animal model that metformin directly binds to the lipid phosphatase SHIP2, reducing its activity. Credit: Lehtonen Lab / University of Helsinki

For decades, metformin has been the first-line drug for the treatment of type 2 diabetes, lowering blood glucose levels by inhibiting glucose production in the liver. Metformin also improves glucose uptake and use by muscle tissue.

The effect of metformin on hepatic glucose production is most likely transmitted through the mitochondrial respiratory chain. However, the mechanism through which the drug increases glucose uptake in muscle tissue has been unknown.

A research group led by Professor Sanna Lehtonen at the University of Helsinki has now demonstrated in cell cultures and in an animal model that metformin directly binds to the lipid phosphatase SHIP2, reducing its activity. The reduction in SHIP2 activity increased glucose uptake in muscle cells and decreased cell death in podocytes, or glomerular epithelial cells.

The lipid phosphatase SHIP2 suppresses the insulin signalling pathway. Prior studies have demonstrated through animal models that individuals suffering from diabetes have elevated levels of SHIP2 in their kidney, muscle and adipose tissue. This reduces the ability of tissue to react to insulin signalling and reduces its glucose uptake. Elevated SHIP2 concentration also increases programmed cell death in podocytes.

In addition to an animal model, Lehtonen’s group utilised patient samples in the study. Their analysis revealed that in patients with type 2 diabetes who were not taking metformin, SHIP2 activity in the kidneys was elevated, in addition to which their podocyte loss was remarkable. In patients taking metformin, SHIP2 activity did not deviate from people without diabetes, while podocyte loss was also lower than in patients using another drug therapy.

“Our results indicate that the lipid phosphatase SHIP2 has a significant role in regulating glucose metabolism and cell death in podocytes. So, regulating SHIP2 activity with metformin or another suitable pharmaceutical agent is crucial in managing type 2 diabetes and particularly in preventing related diabetic kidney disease,” Lehtonen says.

Understanding the mechanism of action helps target drug therapy

Metformin’s mechanism of action is being enthusiastically investigated due to its diverse effects on the body, making it potentially useful in treating diseases other than diabetes in the future. Better understanding of the mechanism also helps target the therapy precisely to those patient groups that will benefit from it.

Immunoperoxidase staining shows that SHIP2 is expressed in the kidney. The reduction in SHIP2 activity increased glucose uptake in muscle cells and decreased cell death in podocytes. Credit: Lehtonen Lab / University of Helsinki

“Combined with the research results published last spring by Professor Leif Groop and Docent Tiinamaija Tuomi, the findings of my group highlight the significance of metformin in treating a certain group of patients with diabetes,” Lehtonen says.

Based on the study conducted by Groop and Tuomi (Ahlqvist et al., Lancet Diabetes Endocrinol. 6: 361-, 2018), a proposal has been made to classify diabetes into five subgroups, one of which would be severe insulin-resistant diabetes. Patients with this type of diabetes are at an exceptionally high risk of also contracting diabetic kidney disease. The researchers estimate that it would be this group in particular that would benefit from metformin.

The results gained by Lehtonen’s group support this view.

“Our findings prove that metformin could protect patients from renal damage by suppressing SHIP2 activity. This introduces a new, direct mechanism of action through which metformin protects the kidneys from damage. According to a recent finding, metformin impacts metabolism also by affecting the gut microbiota,” Lehtonen says.

Identifying new mechanisms of action can expand metformin’s indications for use outside diabetes in treating cancer and cardiovascular diseases, among other disorders, and research is already underway in these fields. It could also contribute to regulating aging.

“Our new study highlights SHIP2’s significance as a drug target. Prior studies support this notion, but knowing that the most common diabetes drug acts precisely through SHIP2 encourages us to find new SHIP2 inhibitors that are more effective than metformin,” Lehtonen says.

Diabetes is among the fastest-spreading diseases, both in Finland and globally.


Explore further:
New way to prevent heart disease in type 1 diabetes

More information:
Zydrune Polianskyte-Prause et al, Metformin increases glucose uptake and acts renoprotectively by reducing SHIP2 activity, The FASEB Journal (2018). DOI: 10.1096/fj.201800529RR

Emma Ahlqvist et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables, The Lancet Diabetes & Endocrinology (2018). DOI: 10.1016/S2213-8587(18)30051-2

Journal reference:
FASEB Journal

Provided by:
University of Helsinki

Tagged with:

About author

Related Articles