Breaking News
February 23, 2019 - U.S.-based patient advocacy organizations received majority of pharma donations, finds study
February 23, 2019 - UCL and AIIMS collaborates to increase academic and student exchange
February 23, 2019 - Mechanism behind how diabetes causes muscle loss revealed
February 23, 2019 - Hepatocellular carcinoma diagnosis, prognosis and treatment may improve by identifying a protein
February 23, 2019 - The American Heart Association issues new reference toolkit for healthcare providers
February 23, 2019 - Studies explore physiological dangers that climate change will have on animal life
February 23, 2019 - Penn study reveals increase in health-related internet searches before ER visits
February 23, 2019 - Intensive therapy during early stages of MS leads to better long-term outcomes
February 23, 2019 - Prenatal Fluconazole Exposure Increases Neonatal Risks
February 23, 2019 - Mental Health Screening: MedlinePlus Lab Test Information
February 23, 2019 - Study suggests birth mechanics are part of the process that leads to autism
February 23, 2019 - Unhealthy diet linked to poor mental health
February 23, 2019 - Study gives a snapshot of crocodile evolution
February 23, 2019 - Research finds steep rise in self-poisonings among young people
February 23, 2019 - American Gastroenterological Association announces “AGA Future Leaders Program”
February 23, 2019 - Scientists uncover new mechanisms regulating neural stem cells
February 23, 2019 - Combinations of certain insecticides turn out to be lethal for honeybees
February 23, 2019 - AHA News: Why Are Black Women at Higher Risk of Dying From Pregnancy Complications?
February 23, 2019 - NIMH » Anxiety Disorders
February 23, 2019 - Autistic people urgently need access to tailored mental health support
February 23, 2019 - Newly designed molecule could benefit people with Friedrich’s Ataxia
February 23, 2019 - Chinese CRISPR twins may have better cognition and memory
February 23, 2019 - Study finds new genetic clues associated with asthma in African ancestry populations
February 23, 2019 - Fetal signaling pathways may offer future opportunities to treat lung damage
February 23, 2019 - Early-stage osteoarthritis drug wins prestigious innovation award
February 23, 2019 - Researchers report positive findings with dasotraline for ADHD in children ages 6-12
February 23, 2019 - News study reanalyzes the effects of noncaloric sweeteners on gut microbiota
February 23, 2019 - New device allows scientists to reproduce blow effects on the heart in lab
February 23, 2019 - Holy herb identified as a potential treatment for Alzheimer’s disease
February 23, 2019 - New technology platform digitally counts growth factors in single cells
February 23, 2019 - Physicians still remain at higher risk for burnout compared to other professionals
February 23, 2019 - Surgery and other treatments offer viable options for adult scoliosis
February 23, 2019 - Reduced antibody adaptability may make the elderly more vulnerable to influenza
February 23, 2019 - Researchers find increased rates of CRC screening in Kentucky after Medicaid expansion
February 23, 2019 - Neighborhood income, education associated with risk of disability progression in MS patients
February 23, 2019 - Endocrine Society opposes new rule that restricts access to Title X Family Planning Program
February 23, 2019 - 2019 guidelines for management of patients with atrial fibrillation
February 23, 2019 - Surprise rheumatoid arthritis discovery points to new treatment for joint inflammation
February 23, 2019 - A just-right fix for a tiny heart
February 23, 2019 - UMass Amherst scientist explores role of citrus peel in decreasing gut inflammation
February 23, 2019 - Owlstone Medical and Shanghai Renji Hospital collaborate to initiate breath biopsy lung cancer trial
February 23, 2019 - AMSBIO’s comprehensive portfolio of knock-out cell lines and lysates
February 23, 2019 - New app reliably determines physicians’ skills in forming accurate, efficient diagnoses
February 23, 2019 - Peripheral nerve injury can trigger the onset and spread of ALS, shows study
February 23, 2019 - Researchers uncover mechanisms that prevent tooth replacement in mice
February 23, 2019 - Once-a-day capsule offers new way to reduce symptoms of chronic breathlessness
February 23, 2019 - FDA Adds Boxed Warning for Increased Risk of Death with Gout Medicine Uloric (febuxostat)
February 23, 2019 - Phone-based intervention aids rheumatoid arthritis care
February 23, 2019 - Opioid epidemic makes eastern inroads and targets African-Americans
February 23, 2019 - New identified biomarker predicts patients who might benefit from HER2-targeted agents
February 23, 2019 - Study offers new insights into mechanisms of changes in erythrocytes under stress
February 23, 2019 - Antipsychotic polypharmacy may be beneficial for schizophrenia patients
February 23, 2019 - Researchers investigate how marijuana and tobacco co-use affects quit attempts by smokers
February 23, 2019 - Patients with diabetes mellitus have high risk of stable ischemic heart disease
February 23, 2019 - Transparency on healthcare prices played key role in Arizona health system’s turnaround
February 23, 2019 - A comprehensive, multinational review of peppers around the world
February 23, 2019 - Study finds modest decrease in burnout among physicians
February 23, 2019 - A simple change can drastically reduce unnecessary tests for urinary tract infections
February 23, 2019 - Deep Learning-Enhanced Device Detects Diabetic Retinopathy
February 23, 2019 - Researchers discover new binding partner for amyloid precursor protein
February 23, 2019 - Modest decrease seen in burnout among physicians, researchers say | News Center
February 23, 2019 - Transplanting bone marrow of young mice into old mice prevents cognitive decline
February 23, 2019 - Mogrify to accelerate novel IP and cell therapies using $3.7m USD funding
February 23, 2019 - Johns Hopkins study describes cells that may help speed bone repair
February 23, 2019 - Scientists demonstrate influence of food odors on proteostasis
February 23, 2019 - Researchers unlock the secret behind reproduction of fish called ‘Mary’
February 23, 2019 - Acupuncture Could Help Ease Menopausal Symptoms
February 23, 2019 - Researchers use AI to detect early signs of Alzheimer’s
February 23, 2019 - On recovery, vulnerability and ritual: An exhibit in white | News Center
February 23, 2019 - Memory Stored in Unexpected Region of the Brain
February 23, 2019 - Several health experts worldwide gather at EUDONORGAN event
February 23, 2019 - Discovery of potent compound in native California shrub may lead to treatment for Alzheimer’s
February 22, 2019 - Researchers create new map of the brain’s own immune system
February 22, 2019 - ICHE’s reviews on surgical infections, unnecessary urine tests, and nurses’ role in antibiotic stewardship
February 22, 2019 - UK Research and Innovation invests £200 million to create new generation of AI leaders
February 22, 2019 - Takeda collaboration to boost fight against Alzheimer’s and other neurodegenerative diseases
February 22, 2019 - Heavy drinking may change DNA, leading to increased craving for alcohol
February 22, 2019 - U.S. opioid deaths jump fourfold in 20 years; epidemic shifts to Eastern states | News Center
February 22, 2019 - 5 Questions with William Turner on Diversity in Medicine
February 22, 2019 - HHS Finalizes Rule Seeking To Expel Planned Parenthood From Family Planning Program
‘Orphan’ RNAs make cancer deadlier, but potentially easier to diagnose

‘Orphan’ RNAs make cancer deadlier, but potentially easier to diagnose

image_pdfDownload PDFimage_print
‘Orphan’ RNAs make cancer deadlier, but potentially easier to diagnose
Breast cancer cells. Credit: NIH

Scientists have long known that cancer can hijack a cell’s existing regulatory circuitry and transform healthy cells into deadly malignancies. But a new discovery from UC San Francisco demonstrates that cancer is more than just a mutineer that seizes control of the cell’s administrative operations—it’s also a clever engineer, capable of constructing entirely new disease-promoting networks out of raw materials readily available in the cell.

In a study published Nov. 5 in Nature Medicine, UCSF researchers show that cancer can make edits to run-of-the-mill RNA sequences to produce what the researchers dubbed “oncRNAs”—a previously unknown class of regulatory molecules that can turn a relatively meek malignancy into a far more aggressive, far deadlier disease.

OncRNAs may also provide clinicians with an important tool for diagnosing cancer. Because they were found in blood drawn from breast cancer patients, the researchers believe oncRNAs may one day allow clinicians to perform non-invasive “liquid biopsies” that require nothing more than a blood sample to diagnose and characterize a patient’s unique malignancy.

From Hijacker to Engineer

Though scientists have long known that cancer cells promote their continued survival by commandeering and repurposing the cell’s normal regulatory machinery, UCSF researchers Hani Goodarzi, Ph.D., postdoctoral fellow, and a member of Hellen Diller Family Comprehensive Cancer Center, Lisa Fish, Ph.D., and HHMI Medical Fellow Steven Zhang wondered whether malignancies might also be able to go a step further, engineering entirely new regulatory pathways that fall outside the purview of normal cells.

According to Goodarzi, senior author of the new paper and an assistant professor in the department of biochemistry and biophysics, this would be possible if two criteria were met. First, cancer cells would need a pool of biomolecules that don’t exist in normal cells; these molecules would exist only as an emergent property of cancer, materializing after the onset of malignancy. Second, these molecules would have to have regulatory potential—cancer would have to be able to use them to execute tasks not carried out in healthy cells.

The Candidates Emerge

While studying small RNAs (sRNAs)—a class of RNA that regulates gene activity rather than coding for functional proteins—the researchers identified candidates that appeared to satisfy these criteria: potential regulatory molecules seen in cancerous cells that were largely absent in healthy tissue.

“Initially we were looking at small RNAs known to be found in cancer cells,” Goodarzi said. “As I was poring over that data, I would now and then notice small RNAs that scientists in the field had never observed or characterized. We didn’t know what they were.”

Goodarzi termed these molecules “orphan non-coding RNAs,” or oncRNAs. To ensure that oncRNAs were truly unique to cancer and not an experimental artifact, the researchers performed a systematic search for them in three types of breast cancer. They identified 201 oncRNAs that were present in cancer but absent from normal mammary cells. Though this confirmed that oncRNAs satisfied one of Goodarzi’s criteria, it didn’t explain their biological role.

Orphans Drive Metastasis

To deduce this, the researchers looked for oncRNAs that were abundant in highly metastatic breast cancers. One in particular stood out—an oncRNA just 45 genetic “letters” long that the researchers named T3p.

High levels of T3p were strongly correlated with advanced stage breast cancer and lower patient survival rates. But why? T3p didn’t promote tumor growth. In fact, when the researchers inactivated T3p, cancer cells continued to grow and divide as before. What makes cancer deadly, however, isn’t usually its growth rate—it’s how effectively it spreads.

“Metastasis is the tail end of cancer progression and it’s a distinct component of the disease,” Goodarzi explained. “It can be very much independent of what happens in tumorigenesis, which is largely driven by tumor growth. Metastasis is defined by other features, like invasiveness and colonization, which fall outside of what it takes for the tumor to grow.”

T3p, it turns out, is a metastatic gas pedal—it makes cancer more aggressive and accelerates the rate at which it spreads. Without T3p, cancer’s ability to invade nearby tissue was seen to be significantly diminished in the new research. By contrast, when the scientists injected cancer cells with inactivated T3p into mice, they found fewer metastatic tumors when compared to mice that received cancer cells in which T3p was active.

Origin and Function of T3p

Surprisingly, T3p was found to have the same sequence as the tail end of a gene called TERC, which encodes the RNA component of the cell’s telomere-manufacturing machinery. Telomeres—repetitive DNA sequences found at each end of a chromosome—function much like aglets on shoe laces, protecting chromosomes from deteriorating when cells divide. Telomere dysfunction has been implicated in a variety of age-related diseases and in cancer.

The sequence similarity between T3p and TERC was no coincidence. The researchers demonstrated that TERC is the raw material from which T3p is produced. Because gene activity is dysregulated in cancer, cancer produces more TERC RNA than it’s supposed to. This allows special proteins that interact with RNA to latch onto this excess TERC and snip off its tail to produce T3p.

Once liberated from its TERC precursor, T3p insinuates itself into the cell’s regulatory machinery and, in doing so, establishes a completely new regulatory network. In the context of breast cancer, for example, T3p was shown to interact with RISC—a cellular machine that recruits small RNAs known as microRNAs (miRNAs) to suppress gene activity. T3p prevents RISC from recruiting the miRNAs that limit the activity of metastasis-promoting genes, thus ensuring that these genes are abnormally active and drive the cancer’s continued progression.

Itinerant Orphans

Though oncRNAs are fabricated in cancer cells, they’re not captives. In fact, they’re drifters. The researchers found that oncRNAs could escape from cancer cells in exosomes—tiny sub-cellular transporters that are loaded with molecular cargo and bud from the cell, and which can often be found circulating in blood. The researchers were able to find T3p and other oncRNAs in blood serum drawn from breast cancer patients.

Because exosomes are known to transport molecular freight between cells, it’s possible that oncRNAs can be delivered to cells where they’re not being manufactured, driving those cells towards metastasis. However, oncRNAs in exosomes may also serve as a powerful new diagnostic marker that could be detected in liquid biopsies.

“Conventional analog markers for cancer were based on looking at the activity levels of genes that are known to be dysregulated in the disease,” Goodarzi said. “OncRNAs improve on this by providing a digital barcode for the identity of the cancer cell. With a digital marker, we can diagnose the disease based simply on the marker’s presence or absence in a tissue sample or in blood. If it’s present we can learn something about the underlying tumor it was released from. One day, exosomes containing orphan RNAs floating around in blood may allow doctors to detect early-stage cancers that elude other diagnostic methods.”

And since Goodarzi and his team identified 200 oncRNAs in addition to T3p, they and other researchers will have ample opportunity to further elucidate the biological role of the other oncRNAs whose functions have yet to be characterized.


Explore further:
Breast cancer cells become invasive by changing their identity

More information:
Lisa Fish et al. Cancer cells exploit an orphan RNA to drive metastatic progression, Nature Medicine (2018). DOI: 10.1038/s41591-018-0230-4

Journal reference:
Nature Medicine

Provided by:
University of California, San Francisco

Tagged with:

About author

Related Articles