Breaking News
February 20, 2019 - Newly licensed nurses work for long hours, also have a second paid job
February 20, 2019 - Physicists identify simple mechanism used by deadly bacteria to fend off antibiotics
February 20, 2019 - FDA Grants Priority Review to Genentech’s Personalized Medicine Entrectinib
February 20, 2019 - Exposure to chemicals before and after birth is associated with a decrease in lung function
February 20, 2019 - Neuroscientists reveal that simple brain region can guide complex feats of mental activity
February 20, 2019 - Study finds new link between food allergies and multiple sclerosis
February 20, 2019 - First gene therapy operation for macular degeneration is a success
February 20, 2019 - Physicians graduated outside the U.S. offer better care for Medicare patients with complex needs
February 20, 2019 - FDA Approves Keytruda (pembrolizumab) for the Adjuvant Treatment of Patients with Melanoma with Involvement of Lymph Node(s) Following Complete Resection
February 20, 2019 - Study identifies brain cells that modulate behavioral response to threats
February 20, 2019 - Researchers take closer look at how viruses bind cells and cause infection
February 20, 2019 - Newly developed gene therapy helps decelerate aging process
February 20, 2019 - Study suggests new treatment strategy for deadly brain cancer
February 20, 2019 - Scientists develop unique hybrid implant that imitates bone structure
February 20, 2019 - Push-ups can be tailored to meet specific needs of individuals
February 20, 2019 - CVD Does Not Modify Depression-Mortality Link in Elderly
February 20, 2019 - Electrical activity early in fruit flies’ brain development could shed light on how neurons wire the brain
February 20, 2019 - Machine learning technique helps predict which asthma patients respond to corticosteroid therapy
February 20, 2019 - Self-reported sleep duration is a useful tool to measure sleep in children, study suggests
February 20, 2019 - T-cells play key role in how the body fights follicular lymphoma
February 20, 2019 - Study shows how 3D organization of genetic material helps perpetuate the species
February 20, 2019 - Researchers engineer stem cell with ‘suicide genes’ to induce cell death in all but beta cells
February 20, 2019 - Study reveals major sex differences in management of cardiovascular risk factors among U.S. adults
February 20, 2019 - Health Tip: Get Your Child to School on Time
February 20, 2019 - Shortcut strategy for screening compounds with clinical potentials for drug development
February 20, 2019 - Common acid reflux drugs tied to elevated risk for kidney disease
February 20, 2019 - Microbiome could be culprit when good drugs do harm
February 20, 2019 - Prenatal exposure to forest fires causes stunted growth in children
February 20, 2019 - Gene therapy restores hearing in mice with congenital genetic deafness
February 20, 2019 - First molecular test predicts treatment response for kidney cancer
February 20, 2019 - New method for improved visualization of single-cell RNA- sequencing data
February 20, 2019 - Researchers capture altered brain activity patterns of Parkinson’s in mice
February 20, 2019 - A possible blood test for detecting Alzheimer’s disease before symptoms show
February 20, 2019 - Primary care physicians associated with longevity, new research finds
February 19, 2019 - New study identifies many key lessons to establish sanctioned safe consumption sites
February 19, 2019 - Single CRISPR treatment can safely and stably correct genetic disease
February 19, 2019 - Multinational initiative to study familial primary distal renal tubular acidosis
February 19, 2019 - Breakthrough study highlights the promise of cell therapies for muscular dystrophy
February 19, 2019 - Subsymptom Threshold Exercise Speeds Concussion Recovery
February 19, 2019 - Midline venous catheters – infants: MedlinePlus Medical Encyclopedia
February 19, 2019 - Searching for side effects
February 19, 2019 - Humanity is all right, probably, although human extinction remains quite possible, researcher says
February 19, 2019 - Having Anesthesia Once as a Baby Does Not Cause Learning Disabilities, New Research Shows
February 19, 2019 - Anti-cancer immunotherapy could be used to fight HIV
February 19, 2019 - Customized Micropatterning for Improved Physiological Relevance
February 19, 2019 - Unique gene therapy approach paves new way to tackle rare, inherited diseases
February 19, 2019 - Activating gene that helps excite neurons reverses depression in male mice
February 19, 2019 - Science Puzzling Out Differences in Gut Bacteria Around the World
February 19, 2019 - Cells that destroy the intestine
February 19, 2019 - On recovery, vulnerability and ritual: An exhibit in white
February 19, 2019 - Scientific Duo Gets Back To Basics To Make Childbirth Safer
February 19, 2019 - COPD patients need more support when understanding new chest symptoms
February 19, 2019 - Using light-based method for production of pharmaceutical molecules
February 19, 2019 - Scientists find link between inflammation and cancer
February 19, 2019 - The High Cost Of Sex: Insurers Often Don’t Pay For Drugs To Treat Problems
February 19, 2019 - Hearing impairment associated with accelerated cognitive decline with age
February 19, 2019 - Researchers identify multiple genetic variants associated with body fat distribution
February 19, 2019 - Influenza and common cold are completely different diseases, study shows
February 19, 2019 - Scientists untangle how microbes manufacture key antibiotic compound
February 19, 2019 - Greater primary care physician supply associated with longer life spans
February 19, 2019 - HIV-1 protein suppresses immune response more broadly than thought
February 19, 2019 - Brain imaging indicates potential success of drug therapy in depressive patients
February 19, 2019 - For 2020 Dem Hopefuls, ‘Medicare-For-All’ Is A Defining Issue, However They Define It
February 19, 2019 - Specialized lung cells appear in the developing fetus much earlier than previously thought
February 19, 2019 - KU professor discusses promise of brain-computer interface to aid, restore communication
February 19, 2019 - Highly effective solution for detecting onset of aggregation in nanoparticles
February 19, 2019 - Early marker of cardiac damage triggered by cancer treatment identified
February 19, 2019 - Antidepressant drug could save people from deadly sepsis, research suggests
February 19, 2019 - CRISPR technology creates pluripotent stem cells that are ‘invisible’ to the immune system
February 19, 2019 - New study establishes how stress favors breast cancer growth and spread
February 19, 2019 - Midlife Systemic Inflammation Linked to Later Cognitive Decline
February 19, 2019 - Therapy derived from parasitic worms downregulates proinflammatory pathways
February 19, 2019 - Antimicrobial reusable coffee cups are less likely to become contaminated with bacteria, study shows
February 19, 2019 - Harnessing the evolutionary games played by cancer cells to advance therapies
February 19, 2019 - AHA News: Heart Transplant Survivor Gets Wedding Proposal at Finish Line
February 19, 2019 - HIV hidden in patients’ cells can now be accurately measured
February 19, 2019 - Research finds reasons for sudden cardiac death in patients with stable ischemic disease
February 19, 2019 - New protocol could help physicians to rule out bacterial infections in infants
February 19, 2019 - Women experiencing miscarriage should be offered treatment choices
February 19, 2019 - New protocol can help identify febrile infants at low risk for serious bacterial infections
New method to analyze cell membrane complexes could revolutionize the way we study diseases

New method to analyze cell membrane complexes could revolutionize the way we study diseases

image_pdfDownload PDFimage_print

Researchers have developed a new technique to analyze cell membrane proteins in situ which could revolutionize the way in which we study diseases, such as cancer, metabolic and heart diseases.

The discovery was made as part of an international research collaboration, led by Oxford University, alongside peers including Imperial College London. The technique could dramatically affect our understanding of both how cell membrane complexes work, and in the process, our approach to healthcare research.

Membranes protect all of our cells and the organelles inside them, including the mitochondria – the powerhouse of the cell. These membranes are studded with biological machinery made of proteins that enable molecular cargo to pass in and out.

This research, published in Science, will enable the development of mass spectrometry (a tool used to analyze the make-up of matter) in biology to be taken to a new level, enabling new discoveries that would not have been possible before.

Studying these membrane-embedded machines in their native state is crucial to understanding mechanisms of disease and providing new goals for treatments. However, current methods for studying them involve removing them from the membrane, which can alter their structure and functional properties.

Lead researcher Professor Dame Carol Robinson, Professor of Physical Chemistry at Oxford’s Department of Chemistry, said: ‘For decades, scientists have had to extract these proteins from their membranes for their studies. But imagine what you might discover if you could get proteins straight from the membrane into a mass spectrometer?

‘I wasn’t sure this would ever work; I thought the membrane environment would be just too complicated and we wouldn’t be able to understand the results. I am delighted that it has because it has given us a whole new view of an important class of drug targets.’

The technique involves vibrating the sample at ultrasonic frequencies so that the cell begins to fall apart. Electrical currents then applied an electric field to eject the protein machines out of the membrane and directly into a mass spectrometer – an instrument that can detect a molecule’s chemical ‘signature’, based on its mass.

Not only did the membrane protein machines survive the ejection; the analysis also revealed how they communicate with each other, are guided to their final location and transport their molecular cargo into the cell.

Professor Steve Matthews, from the Department of Life Sciences at Imperial, said: ‘With the development of this method, the application of mass spectrometry in biology will be taken to a new level, using it to make discoveries that would not have been possible before.’

Dr Sarah Rouse, also from the Department of Life Sciences at Imperial, said: ‘A longstanding question on the structure of one membrane machine from mitochondria has now been solved using this technique. Mitochondria are particularly interesting because there are several diseases that target them specifically, that we may now be able to design new therapies for.’

Of the study’s potential impact Professor Dame Robinson added: “The results are particularly exciting for mitochondrial membranes–we managed to catch a translocator in action–passing metabolites. Because mitochondrial therapeutics target a wide range of debilitating diseases, we now have a new way of assessing their effects.’

Tagged with:

About author

Related Articles