Breaking News
May 3, 2019 - Vaping and Smoking May Signal Greater Motivation to Quit
May 3, 2019 - Dementia looks different in brains of Hispanics
May 3, 2019 - Short-Staffed Nursing Homes See Drop In Medicare Ratings
May 3, 2019 - Study of teens with eating disorders explores how substance users differ from non-substance users
May 3, 2019 - Scientists develop new video game that may help in the study of Alzheimer’s
May 3, 2019 - Arc Bio introduces Galileo Pathogen Solution product line at ASM Clinical Virology Symposium
May 3, 2019 - Cornell University study uncovers relationship between starch digestion gene and gut bacteria
May 3, 2019 - How to Safely Use Glucose Meters and Test Strips for Diabetes
May 3, 2019 - Anti-inflammatory drugs ineffective for prevention of Alzheimer’s disease
May 3, 2019 - Study tracks Pennsylvania’s oil and gas waste-disposal practices
May 3, 2019 - Creating a better radiation diagnostic test for astronauts
May 3, 2019 - Vegans are often deficient in these four nutrients
May 3, 2019 - PPDC announces seed grants to develop medical devices for children
May 3, 2019 - Study maps out the frequency and impact of water polo head injuries
May 3, 2019 - Research on Reddit identifies risks associated with unproven treatments for opioid addiction
May 3, 2019 - Good smells may help ease tobacco cravings
May 3, 2019 - Medical financial hardship found to be very common among people in the United States
May 3, 2019 - Researchers develop multimodal system for personalized post-stroke rehabilitation
May 3, 2019 - Study shows significant mortality benefit with CABG over percutaneous coronary intervention
May 3, 2019 - Will gene-editing of human embryos ever be justifiable?
May 3, 2019 - FDA Approves Dengvaxia (dengue vaccine) for the Prevention of Dengue Disease in Endemic Regions
May 3, 2019 - Why Tonsillitis Keeps Coming Back
May 3, 2019 - Fighting the opioid epidemic with data
May 3, 2019 - Maggot sausages may soon be a reality
May 3, 2019 - Deletion of ATDC gene prevents development of pancreatic cancer in mice
May 2, 2019 - Targeted Therapy Promising for Rare Hematologic Cancer
May 2, 2019 - Alzheimer’s disease is a ‘double-prion disorder,’ study shows
May 2, 2019 - Reservoir bugs: How one bacterial menace makes its home in the human stomach
May 2, 2019 - Clinical, Admin Staff From Cardiology Get Sneak Peek at Epic
May 2, 2019 - Depression increases hospital use and mortality in children
May 2, 2019 - Vicon and NOC support CURE International to create first gait lab in Ethiopia
May 2, 2019 - Researchers use 3D printer to make paper organs
May 2, 2019 - Viral infection in utero associated with behavioral abnormalities in offspring
May 2, 2019 - U.S. Teen Opioid Deaths Soaring
May 2, 2019 - Opioid distribution data should be public
May 2, 2019 - In the Spotlight: “I’m learning every single day”
May 2, 2019 - 2019 Schaefer Scholars Announced
May 2, 2019 - Podcast: KHN’s ‘What The Health?’ Bye-Bye, ACA, And Hello ‘Medicare-For-All’?
May 2, 2019 - Study describes new viral molecular evasion mechanism used by cytomegalovirus
May 2, 2019 - SLU study suggests a more equitable way for Medicare reimbursement
May 2, 2019 - Scientists discover first gene involved in lower urinary tract obstruction
May 2, 2019 - Researchers identify 34 genes associated with increased risk of ovarian cancer
May 2, 2019 - Many low-income infants receive formula in the first few days of life, finds study
May 2, 2019 - Global study finds high success rate for hip and knee replacements
May 2, 2019 - Taking depression seriously: What is it?
May 2, 2019 - With Head Injuries Mounting, Will Cities Put Their Feet Down On E-Scooters?
May 2, 2019 - Scientists develop small fluorophores for tracking metabolites in living cells
May 2, 2019 - Study casts new light into how mothers’ and babies’ genes influence birth weight
May 2, 2019 - Researchers uncover new brain mechanisms regulating body weight
May 2, 2019 - Organ-on-chip systems offered to Asia-Pacific regions by Sydney’s AXT
May 2, 2019 - Adoption of new rules drops readmission penalties against safety net hospitals
May 2, 2019 - Kids and teens who consume zero-calorie sweetened beverages do not save calories
May 2, 2019 - Improved procedure for cancer-related erectile dysfunction
May 2, 2019 - Hormone may improve social behavior in autism
May 2, 2019 - Alzheimer’s disease may be caused by infectious proteins called prions
May 2, 2019 - Even Doctors Can’t Navigate Our ‘Broken Health Care System’
May 2, 2019 - Study looks at the impact on criminal persistence of head injuries
May 2, 2019 - Honey ‘as high in sugars as table sugar’
May 2, 2019 - Innovations to U.S. food system could help consumers in choosing healthy foods
May 2, 2019 - FDA Approves Mavyret (glecaprevir and pibrentasvir) as First Treatment for All Genotypes of Hepatitis C in Pediatric Patients
May 2, 2019 - Women underreport prevalence and intensity of their own snoring
May 2, 2019 - Concussion summit focuses on science behind brain injury
May 2, 2019 - Booker’s Argument For Environmental Justice Stays Within The Lines
May 2, 2019 - Cornell research explains increased metastatic cancer risk in diabetics
May 2, 2019 - Mount Sinai study provides fresh insights into cellular pathways that cause cancer
May 2, 2019 - Researchers to study link between prenatal pesticide exposures and childhood ADHD
May 2, 2019 - CoGEN Congress 2019: Speakers’ overviews
May 2, 2019 - A new strategy for managing diabetic macular edema in people with good vision
May 2, 2019 - Sagent Pharmaceuticals Issues Voluntary Nationwide Recall of Ketorolac Tromethamine Injection, USP, 60mg/2mL (30mg per mL) Due to Lack of Sterility Assurance
May 2, 2019 - Screen time associated with behavioral problems in preschoolers
May 2, 2019 - Hormone reduces social impairment in kids with autism | News Center
May 2, 2019 - Researchers synthesize peroxidase-mimicking nanozyme with low cost and superior catalytic activity
May 2, 2019 - Study results of a potential drug to treat Type 2 diabetes in children announced
May 2, 2019 - Multigene test helps doctors to make effective treatment decisions for breast cancer patients
May 2, 2019 - UNC School of Medicine initiative providing unique care to dementia patients
May 2, 2019 - Nestlé Health Science and VHP join forces to launch innovative COPES program for cancer patients
May 2, 2019 - Study examines how our brain generates consciousness and loses it during anesthesia
May 2, 2019 - Transition Support Program May Aid Young Adults With Type 1 Diabetes
May 2, 2019 - Study shows how neutrophils exacerbate atherosclerosis by inducing smooth muscle-cell death
May 2, 2019 - Research reveals complexity of how we make decisions
Cancer stem cells get energy from protein, and it’s proving to be their Achilles’ heel

Cancer stem cells get energy from protein, and it’s proving to be their Achilles’ heel

Working in the lab of Craig Jordan, Ph.D., first author Courtney Jones shows that leukemia stem cells depend on amino acid metabolism, and that the drug venetoclax blocks this action, killing the cells. Credit: University of Colorado Cancer Center

Think of energy metabolism like a party popper: Ripping something apart releases a bang. Most of your cells rip apart sugar to release the “bang” of energy. Sometimes they rip apart fats, and in a pinch, cells can even metabolize protein.

Cancer cells do things a little differently. First, most cancer cells continue to depend on glucose, but switch over from “cellular respiration” (which requires oxygen), to “glycolysis” (which can happen with or without oxygen). A University of Colorado Cancer Center study published today in the journal Cancer Cell shows that cancer stem cells take a third approach: They stick with cellular respiration, but switch from metabolizing sugar to metabolizing protein, or more precisely amino acids, which are the building blocks of protein.

Healthy cells don’t need to metabolize protein. The current study shows that cancer stem cells do need to metabolize protein. And this difference is proving to be an Achilles’ heel that allows researchers to target cancer stem cells without harming healthy cells—the approach has already proven effective in clinical trials against acute myeloid leukemia and holds promise for other cancers including breast, pancreatic, and liver.

“In acute myeloid leukemia, we’ve gotten pretty good at killing the bulk of cancer cells, but a small population of cancer stem cells are uniquely equipped to resist these therapies, and these stem cells often survive to restart the condition later. We’ve needed a way to specifically target cancer stem cells, and it looks like this might be it,” says Craig Jordan, Ph.D., investigator at University of Colorado Cancer Center, division chief of the Division of Hematology and the Nancy Carroll Allen Professor of Hematology at the University of Colorado School of Medicine.

In fact, Jordan has spent more than 20 years laying the scientific groundwork for this attack against cancer stem cells, and now just in the past six months, with a flurry of important publications, the work from his team has led not only to increased understanding of these tenacious cells, but to treatments that may change the standard of care for acute myeloid leukemia and perhaps other cancers as well. In a recent clinical trial, patients with acute myeloid leukemia who were not candidates for bone marrow transplant were treated with the drug venetoclax, which blocks cells’ ability to uptake amino acids.

“Conventional chemotherapy is not effective for most patients with acute myeloid leukemia. The new results with venetoclax look very promising,” Jordan says. Clinical trial results are also published today in the journal Nature Medicine, with first author Daniel Pollyea, MD. The current study circles back to pinpoint why the clinical trial was so successful.

Very basically, a series of studies performed by first author Courtney Jones, Ph.D., and others in the Jordan lab showed that leukemia stem cells do not (or are perhaps unable) to switch from cellular respiration to glycolysis like more mature cancer cells. Instead, they switch from metabolizing glucose to metabolizing amino acids—in fact, they come to absolutely depend on metabolizing amino acids for energy, so much so that when the ability of leukemia stem cells to uptake amino acids is interrupted, these cells die.

“Courtney’s research represents a key step in understanding how to better eradicate leukemia stem cells. With her findings as a foundation, I believe we can now move forward to create even more effective therapies,” Jordan says.

The drug venetoclax stops leukemia stem cells from being able to use amino acids for energy. In the lab and now in the clinic, when researchers treated AML patients with venetoclax, leukemia stem cells died. Importantly, because healthy cells do not depend on amino acid metabolism, venetoclax killed leukemia stem cells without harming healthy cells.

Interestingly, it was only AML patients who were treated with venetoclax as their first treatment that showed such a dramatic response.

“When patients were treated with other therapies first, leukemia stem cells were pushed to diversify and some adopted lipid metabolism,” Jones says.

When those patients were subsequently treated with venetoclax, the drug killed the cancer stem cells that continued to depend on amino acid metabolism, but was ineffective against cancer stem cells that had switched to lipid metabolism. It was as if lipid metabolism provided an avenue of escape for these cells, and when even a small population of leukemia stem cells was able to resist therapy, they were able to later restart the growth of the disease.

The group’s future work hopes to explore the possibility of inhibiting lipid metabolism along with amino acid metabolism for use with AML patients whose cancers have resisted or relapsed after previous therapies.

“In this paper, we report an important piece of science that describes a vulnerability of these leukemia stem cells, and in the Nature Medicine paper we describe a treatment that successfully exploits this vulnerability,” Jordan says. “We believe this type of therapy is just the beginning of what may become an entirely new way of treating leukemia. Now our challenge is to optimize this treatment in acute myeloid leukemia, while possibly expanding it for use in other settings where cancer stem cells continue to drive the development, growth and relapse of cancer.”


Explore further:
New combination treatment targets pre-leukemia stem cells

More information:
Cancer Cell (2018). DOI: 10.1016/j.ccell.2018.10.005

Tagged with:

About author

Related Articles