Breaking News
May 3, 2019 - Vaping and Smoking May Signal Greater Motivation to Quit
May 3, 2019 - Dementia looks different in brains of Hispanics
May 3, 2019 - Short-Staffed Nursing Homes See Drop In Medicare Ratings
May 3, 2019 - Study of teens with eating disorders explores how substance users differ from non-substance users
May 3, 2019 - Scientists develop new video game that may help in the study of Alzheimer’s
May 3, 2019 - Arc Bio introduces Galileo Pathogen Solution product line at ASM Clinical Virology Symposium
May 3, 2019 - Cornell University study uncovers relationship between starch digestion gene and gut bacteria
May 3, 2019 - How to Safely Use Glucose Meters and Test Strips for Diabetes
May 3, 2019 - Anti-inflammatory drugs ineffective for prevention of Alzheimer’s disease
May 3, 2019 - Study tracks Pennsylvania’s oil and gas waste-disposal practices
May 3, 2019 - Creating a better radiation diagnostic test for astronauts
May 3, 2019 - Vegans are often deficient in these four nutrients
May 3, 2019 - PPDC announces seed grants to develop medical devices for children
May 3, 2019 - Study maps out the frequency and impact of water polo head injuries
May 3, 2019 - Research on Reddit identifies risks associated with unproven treatments for opioid addiction
May 3, 2019 - Good smells may help ease tobacco cravings
May 3, 2019 - Medical financial hardship found to be very common among people in the United States
May 3, 2019 - Researchers develop multimodal system for personalized post-stroke rehabilitation
May 3, 2019 - Study shows significant mortality benefit with CABG over percutaneous coronary intervention
May 3, 2019 - Will gene-editing of human embryos ever be justifiable?
May 3, 2019 - FDA Approves Dengvaxia (dengue vaccine) for the Prevention of Dengue Disease in Endemic Regions
May 3, 2019 - Why Tonsillitis Keeps Coming Back
May 3, 2019 - Fighting the opioid epidemic with data
May 3, 2019 - Maggot sausages may soon be a reality
May 3, 2019 - Deletion of ATDC gene prevents development of pancreatic cancer in mice
May 2, 2019 - Targeted Therapy Promising for Rare Hematologic Cancer
May 2, 2019 - Alzheimer’s disease is a ‘double-prion disorder,’ study shows
May 2, 2019 - Reservoir bugs: How one bacterial menace makes its home in the human stomach
May 2, 2019 - Clinical, Admin Staff From Cardiology Get Sneak Peek at Epic
May 2, 2019 - Depression increases hospital use and mortality in children
May 2, 2019 - Vicon and NOC support CURE International to create first gait lab in Ethiopia
May 2, 2019 - Researchers use 3D printer to make paper organs
May 2, 2019 - Viral infection in utero associated with behavioral abnormalities in offspring
May 2, 2019 - U.S. Teen Opioid Deaths Soaring
May 2, 2019 - Opioid distribution data should be public
May 2, 2019 - In the Spotlight: “I’m learning every single day”
May 2, 2019 - 2019 Schaefer Scholars Announced
May 2, 2019 - Podcast: KHN’s ‘What The Health?’ Bye-Bye, ACA, And Hello ‘Medicare-For-All’?
May 2, 2019 - Study describes new viral molecular evasion mechanism used by cytomegalovirus
May 2, 2019 - SLU study suggests a more equitable way for Medicare reimbursement
May 2, 2019 - Scientists discover first gene involved in lower urinary tract obstruction
May 2, 2019 - Researchers identify 34 genes associated with increased risk of ovarian cancer
May 2, 2019 - Many low-income infants receive formula in the first few days of life, finds study
May 2, 2019 - Global study finds high success rate for hip and knee replacements
May 2, 2019 - Taking depression seriously: What is it?
May 2, 2019 - With Head Injuries Mounting, Will Cities Put Their Feet Down On E-Scooters?
May 2, 2019 - Scientists develop small fluorophores for tracking metabolites in living cells
May 2, 2019 - Study casts new light into how mothers’ and babies’ genes influence birth weight
May 2, 2019 - Researchers uncover new brain mechanisms regulating body weight
May 2, 2019 - Organ-on-chip systems offered to Asia-Pacific regions by Sydney’s AXT
May 2, 2019 - Adoption of new rules drops readmission penalties against safety net hospitals
May 2, 2019 - Kids and teens who consume zero-calorie sweetened beverages do not save calories
May 2, 2019 - Improved procedure for cancer-related erectile dysfunction
May 2, 2019 - Hormone may improve social behavior in autism
May 2, 2019 - Alzheimer’s disease may be caused by infectious proteins called prions
May 2, 2019 - Even Doctors Can’t Navigate Our ‘Broken Health Care System’
May 2, 2019 - Study looks at the impact on criminal persistence of head injuries
May 2, 2019 - Honey ‘as high in sugars as table sugar’
May 2, 2019 - Innovations to U.S. food system could help consumers in choosing healthy foods
May 2, 2019 - FDA Approves Mavyret (glecaprevir and pibrentasvir) as First Treatment for All Genotypes of Hepatitis C in Pediatric Patients
May 2, 2019 - Women underreport prevalence and intensity of their own snoring
May 2, 2019 - Concussion summit focuses on science behind brain injury
May 2, 2019 - Booker’s Argument For Environmental Justice Stays Within The Lines
May 2, 2019 - Cornell research explains increased metastatic cancer risk in diabetics
May 2, 2019 - Mount Sinai study provides fresh insights into cellular pathways that cause cancer
May 2, 2019 - Researchers to study link between prenatal pesticide exposures and childhood ADHD
May 2, 2019 - CoGEN Congress 2019: Speakers’ overviews
May 2, 2019 - A new strategy for managing diabetic macular edema in people with good vision
May 2, 2019 - Sagent Pharmaceuticals Issues Voluntary Nationwide Recall of Ketorolac Tromethamine Injection, USP, 60mg/2mL (30mg per mL) Due to Lack of Sterility Assurance
May 2, 2019 - Screen time associated with behavioral problems in preschoolers
May 2, 2019 - Hormone reduces social impairment in kids with autism | News Center
May 2, 2019 - Researchers synthesize peroxidase-mimicking nanozyme with low cost and superior catalytic activity
May 2, 2019 - Study results of a potential drug to treat Type 2 diabetes in children announced
May 2, 2019 - Multigene test helps doctors to make effective treatment decisions for breast cancer patients
May 2, 2019 - UNC School of Medicine initiative providing unique care to dementia patients
May 2, 2019 - Nestlé Health Science and VHP join forces to launch innovative COPES program for cancer patients
May 2, 2019 - Study examines how our brain generates consciousness and loses it during anesthesia
May 2, 2019 - Transition Support Program May Aid Young Adults With Type 1 Diabetes
May 2, 2019 - Study shows how neutrophils exacerbate atherosclerosis by inducing smooth muscle-cell death
May 2, 2019 - Research reveals complexity of how we make decisions
New method enhances efficiency and accuracy of single cell RNA sequencing

New method enhances efficiency and accuracy of single cell RNA sequencing

In the era of personalized medicine, scientists are using new genetic and genomic insights to help them determine the best treatment for a given patient. In the case of cancer, the first step toward these treatments is an investigation into how tumor cells behave in an effort to figure out the best drugs to use to attack them.

Researchers then use DNA- and RNA- sequencing to look at populations of cells, examining which genes are expressed within a sample of cancerous tissue. However, traditional sequencing methods can hide that fact that not all tumor cells necessarily behave in the same way. Not recognizing this means that if you target a tumor with a specific type of drug, some cells may be just different enough to survive and thrive.

In a major advance for genomics, it is now possible to look at what one single cell is doing at any given time with a technique called single-cell RNA sequencing (scRNA-seq). This method looks at the amount of messenger RNAs (mRNAs) in a cell and compares those to other cells to look for differences in gene expression.

However, what information you find can depend on how your run your experiment and how the data are analyzed. Lana Garmire, Ph.D., associate professor of the department of computational medicine & bioinformatics at Michigan Medicine and her team is studying ways to eliminate some of the biases that can make interpreting scRNA-seq data difficult.

“A lot of the noise in this type of sequencing comes from the fact that you have to measure samples in extreme low quantities and in different batches,” she explains. For example, the tissue sample a researcher is analyzing may not fit on one plate, a piece of equipment used to house cell samples, and therefore have to be split onto two plates. Differences that arise due to this split are called batch effects. Genomics researchers must correct for these batch effects, but this process can raise a conundrum: how do you know if a difference is a batch effect or a true difference between cells?

New uses for data

Bioinformatics is the term for collecting and analyzing complex biological data using computer programs. It is a relatively new field born out of the ability to gather enormous amounts of biological data, such as DNA and protein sequences.

Researchers rely on bioinformatics techniques to determine which genes are expressed in single cells. But they’ve had to work around the noise introduced through different research protocols and batch effects. Garmire, who recently joined U-M from the University of Hawaii and is the new faculty director University of Michigan Medical School Bioinformatics Core, has discovered a more efficient way of identifying differences between cells using the same set of data produced during sequencing experiments. Instead of relying on gene expression, she found that looking at what are known as single nucleotide variants (SNVs) can eliminate some of this uncertainty. “With SNVs, you are dealing with numbers that are binary, 0 and 1. Either the mutation is there or not.”

Recall that genes are made up of nucleotides represented by the letters A, T, G and C that make up a code that is translated into a protein. Garmire’s method looks for differences in single nucleotides, knowing that an A can only be replaced by a T and a G by a C. This new work, described in Nature Communications, developed a new set of procedures to process scRNA-seq data and retrieve this variant information. Further, using a computer program called SSrGE, they can link this variant information to more traditional gene expression information.

“This gives us information on different subpopulations of tumor cells and becomes sort of like a fingerprint that can be marked to identify cell-to-cell differences,” says Garmire.

What it all means

Ultimately, drug makers and clinicians use these targets to guide pharmaceutical treatments. “When you want to attack the issue, you go at it by attacking the fundamental features of that issue: the mutations. Clinicians may be able to use this information later on to guide their therapeutics.” Garmire looks forward to bringing bioinformatics out of the lab, helping researchers who amass large amounts of data to use them and develop downstream clinical applications. “We divide the body up and specialize but at the end of the day, you need to look holistically and ask, what am I doing and who is this helping? We are developing computational tools to bring bioinformatics researchers and bench scientists and clinicians together to connect the dots and ultimately make change.

Source:

http://www.med.umich.edu/

Tagged with:

About author

Related Articles