Breaking News
May 3, 2019 - Vaping and Smoking May Signal Greater Motivation to Quit
May 3, 2019 - Dementia looks different in brains of Hispanics
May 3, 2019 - Short-Staffed Nursing Homes See Drop In Medicare Ratings
May 3, 2019 - Study of teens with eating disorders explores how substance users differ from non-substance users
May 3, 2019 - Scientists develop new video game that may help in the study of Alzheimer’s
May 3, 2019 - Arc Bio introduces Galileo Pathogen Solution product line at ASM Clinical Virology Symposium
May 3, 2019 - Cornell University study uncovers relationship between starch digestion gene and gut bacteria
May 3, 2019 - How to Safely Use Glucose Meters and Test Strips for Diabetes
May 3, 2019 - Anti-inflammatory drugs ineffective for prevention of Alzheimer’s disease
May 3, 2019 - Study tracks Pennsylvania’s oil and gas waste-disposal practices
May 3, 2019 - Creating a better radiation diagnostic test for astronauts
May 3, 2019 - Vegans are often deficient in these four nutrients
May 3, 2019 - PPDC announces seed grants to develop medical devices for children
May 3, 2019 - Study maps out the frequency and impact of water polo head injuries
May 3, 2019 - Research on Reddit identifies risks associated with unproven treatments for opioid addiction
May 3, 2019 - Good smells may help ease tobacco cravings
May 3, 2019 - Medical financial hardship found to be very common among people in the United States
May 3, 2019 - Researchers develop multimodal system for personalized post-stroke rehabilitation
May 3, 2019 - Study shows significant mortality benefit with CABG over percutaneous coronary intervention
May 3, 2019 - Will gene-editing of human embryos ever be justifiable?
May 3, 2019 - FDA Approves Dengvaxia (dengue vaccine) for the Prevention of Dengue Disease in Endemic Regions
May 3, 2019 - Why Tonsillitis Keeps Coming Back
May 3, 2019 - Fighting the opioid epidemic with data
May 3, 2019 - Maggot sausages may soon be a reality
May 3, 2019 - Deletion of ATDC gene prevents development of pancreatic cancer in mice
May 2, 2019 - Targeted Therapy Promising for Rare Hematologic Cancer
May 2, 2019 - Alzheimer’s disease is a ‘double-prion disorder,’ study shows
May 2, 2019 - Reservoir bugs: How one bacterial menace makes its home in the human stomach
May 2, 2019 - Clinical, Admin Staff From Cardiology Get Sneak Peek at Epic
May 2, 2019 - Depression increases hospital use and mortality in children
May 2, 2019 - Vicon and NOC support CURE International to create first gait lab in Ethiopia
May 2, 2019 - Researchers use 3D printer to make paper organs
May 2, 2019 - Viral infection in utero associated with behavioral abnormalities in offspring
May 2, 2019 - U.S. Teen Opioid Deaths Soaring
May 2, 2019 - Opioid distribution data should be public
May 2, 2019 - In the Spotlight: “I’m learning every single day”
May 2, 2019 - 2019 Schaefer Scholars Announced
May 2, 2019 - Podcast: KHN’s ‘What The Health?’ Bye-Bye, ACA, And Hello ‘Medicare-For-All’?
May 2, 2019 - Study describes new viral molecular evasion mechanism used by cytomegalovirus
May 2, 2019 - SLU study suggests a more equitable way for Medicare reimbursement
May 2, 2019 - Scientists discover first gene involved in lower urinary tract obstruction
May 2, 2019 - Researchers identify 34 genes associated with increased risk of ovarian cancer
May 2, 2019 - Many low-income infants receive formula in the first few days of life, finds study
May 2, 2019 - Global study finds high success rate for hip and knee replacements
May 2, 2019 - Taking depression seriously: What is it?
May 2, 2019 - With Head Injuries Mounting, Will Cities Put Their Feet Down On E-Scooters?
May 2, 2019 - Scientists develop small fluorophores for tracking metabolites in living cells
May 2, 2019 - Study casts new light into how mothers’ and babies’ genes influence birth weight
May 2, 2019 - Researchers uncover new brain mechanisms regulating body weight
May 2, 2019 - Organ-on-chip systems offered to Asia-Pacific regions by Sydney’s AXT
May 2, 2019 - Adoption of new rules drops readmission penalties against safety net hospitals
May 2, 2019 - Kids and teens who consume zero-calorie sweetened beverages do not save calories
May 2, 2019 - Improved procedure for cancer-related erectile dysfunction
May 2, 2019 - Hormone may improve social behavior in autism
May 2, 2019 - Alzheimer’s disease may be caused by infectious proteins called prions
May 2, 2019 - Even Doctors Can’t Navigate Our ‘Broken Health Care System’
May 2, 2019 - Study looks at the impact on criminal persistence of head injuries
May 2, 2019 - Honey ‘as high in sugars as table sugar’
May 2, 2019 - Innovations to U.S. food system could help consumers in choosing healthy foods
May 2, 2019 - FDA Approves Mavyret (glecaprevir and pibrentasvir) as First Treatment for All Genotypes of Hepatitis C in Pediatric Patients
May 2, 2019 - Women underreport prevalence and intensity of their own snoring
May 2, 2019 - Concussion summit focuses on science behind brain injury
May 2, 2019 - Booker’s Argument For Environmental Justice Stays Within The Lines
May 2, 2019 - Cornell research explains increased metastatic cancer risk in diabetics
May 2, 2019 - Mount Sinai study provides fresh insights into cellular pathways that cause cancer
May 2, 2019 - Researchers to study link between prenatal pesticide exposures and childhood ADHD
May 2, 2019 - CoGEN Congress 2019: Speakers’ overviews
May 2, 2019 - A new strategy for managing diabetic macular edema in people with good vision
May 2, 2019 - Sagent Pharmaceuticals Issues Voluntary Nationwide Recall of Ketorolac Tromethamine Injection, USP, 60mg/2mL (30mg per mL) Due to Lack of Sterility Assurance
May 2, 2019 - Screen time associated with behavioral problems in preschoolers
May 2, 2019 - Hormone reduces social impairment in kids with autism | News Center
May 2, 2019 - Researchers synthesize peroxidase-mimicking nanozyme with low cost and superior catalytic activity
May 2, 2019 - Study results of a potential drug to treat Type 2 diabetes in children announced
May 2, 2019 - Multigene test helps doctors to make effective treatment decisions for breast cancer patients
May 2, 2019 - UNC School of Medicine initiative providing unique care to dementia patients
May 2, 2019 - Nestlé Health Science and VHP join forces to launch innovative COPES program for cancer patients
May 2, 2019 - Study examines how our brain generates consciousness and loses it during anesthesia
May 2, 2019 - Transition Support Program May Aid Young Adults With Type 1 Diabetes
May 2, 2019 - Study shows how neutrophils exacerbate atherosclerosis by inducing smooth muscle-cell death
May 2, 2019 - Research reveals complexity of how we make decisions
Scientists restore breathing, forelimb function in animal models of chronic spinal cord injury

Scientists restore breathing, forelimb function in animal models of chronic spinal cord injury

Millions of people worldwide are living with chronic spinal cord injuries, with 250,000 to 500,000 new cases each year–most from vehicle crashes or falls. The most severe spinal cord injuries completely paralyze their victims and more than half impair a person’s ability to breathe. Now, a breakthrough study published in Nature Communications has demonstrated, in animal models of chronic injury, that long-term, devastating effects of spinal cord trauma on breathing and limb function may be reversible.

The new study describes a treatment regimen that helps reawaken certain special types of nerve cells that can regenerate extensions, called axons, within the damaged spinal cord. Rats with spinal cords half severed at the second cervical vertebrae (C2) regained complete diaphragm and partial forelimb function on the severed side after treatment. The recuperative effects of the therapy were fully maintained six months after treatment end.

“For the first time we have permanently restored both breathing and some arm function in a form of high cervical, chronic spinal cord injury-induced paralysis. The complete recovery, especially of breathing, occurs rapidly after a near lifetime of paralysis in a rodent model,” says senior author Jerry Silver, PhD, professor of neurosciences at Case Western Reserve University School of Medicine.

The treatment leverages the body’s innate ability to very slowly sprout new axon branches from a sub-population of nerve cells that remain intact below the injury. The activity of these new branches is completely stifled by a family of potently inhibitory molecules called proteoglycans. Said Silver, “The strategy was to use a simple, one-time injection of an enzyme, chondroitinase, that breaks down the inhibitory proteoglycan molecules. The enzyme was administered, not within the lesion itself, but lower down within the spinal cord where motor nerve cells reside that send axons out to the diaphragm and forearm.”

In animals treated immediately after spinal cord injury, the enzyme only marginally helped restore nerve growth with minimal functional recovery. However, in animals treated long after injury, the therapeutic effects of the enzyme were remarkably better. In as little as one week after treatment in chronically injured rats, new nerve extensions began to restore diaphragm function that had been silent for many months. Seventy percent of rats treated with the enzyme chronically, also began to use their forelimbs to move about and explore their environment (compared to only 30 percent of control animals).

“Surprisingly, the technique worked far better at chronic stages than at acute stages after injury,” says Silver. The longer the animals had been paralyzed, the greater were the restorative effects of the enzyme. Silver’s team found that even after an unprecedented year and a half following spinal cord injury, the treatment could recover full activity to rat diaphragms. One week after treatment, 60 percent of the animals had improved diaphragm function. Two weeks later, every rat showed improvement–even though their paralysis had lasted most of their lives.

Interestingly, exposing the rats to brief periods of low oxygen levels, a respiratory therapy known as acute intermittent hypoxia, helped strengthen the growing nerve extensions, providing an added benefit. However, Silver’s team found that when the rats were treated with the enzyme combined with excessive amounts of respiratory therapy, rats developed chaotic activity in their once paralyzed diaphragms. The researchers hypothesized that the potential for highly abnormal activity may be why the body releases inhibitory molecules to prevent functional axon regeneration in the spinal cord. They are now working to optimize the combination therapy to maximize recovery, especially in the forearm and paw.

“Our data illustrate the relative ease with which an essential motor system can regain functionality months to years after severe spinal cord injury,” says Silver. “The treatment regimen in our study is relevant to multiple types of chronic incomplete spinal traumas, and we are hopeful it may also help restore motor function following spinal cord injury in humans.”

Source:

http://casemed.case.edu/cwrumed360/news-releases/release.cfm?news_id=1573&news_category=8

Tagged with:

About author

Related Articles