Breaking News
February 22, 2019 - Oncotype DX Not Cost-Effective for Low-Risk Breast Cancer
February 22, 2019 - Scientists discover new type of immune cells that are essential for forming heart valves
February 22, 2019 - Talk About Déjà Vu: Senators Set To Re-Enact Drug Price Hearing Of 60 Years Ago
February 22, 2019 - Genetic defect linked to pediatric liver disease identified
February 22, 2019 - New cellular atlas could provide a deeper insight into blinding diseases
February 22, 2019 - Growing number of cancer survivors, fewer providers point to challenge in meeting care needs
February 22, 2019 - Innovative compound offers a new therapeutic approach to treat multiple sclerosis
February 22, 2019 - $1.5 million grant to develop opioid treatment program for jail detainees
February 22, 2019 - FDA’s new proposed rule would update regulatory requirements for sunscreen products in the U.S
February 22, 2019 - Most Hip, Knee Replacements Last Decades, Study Finds
February 22, 2019 - Wellness problems prevalent among ob-gyn residents
February 22, 2019 - In the Spotlight: “The world is your oyster in geriatrics”
February 22, 2019 - Successful testing of multi-organ “human-on-a-chip” could replace animals as test subjects
February 22, 2019 - Analysis of cervical precancer shows decline in two strains of HPV
February 22, 2019 - Sugary stent eases suturing of blood vessels
February 22, 2019 - From surgery to psychiatry: A medical student reevaluates his motivations
February 22, 2019 - Is New App From Feds Your Answer To Navigating Medicare Coverage? Yes And No
February 22, 2019 - New pacemakers powered by heartbeats could reduce need for surgery
February 22, 2019 - The United States records highest drug overdose death rates
February 22, 2019 - Phase 1 data reinforce safety profile of new drug for treating Duchenne muscular dystrophy
February 22, 2019 - Vitamin D supplementation less effective in the presence of obesity, shows study
February 22, 2019 - Sarepta Announces FDA Acceptance of Golodirsen (SRP-4053) New Drug Application for Patients with Duchenne Muscular Dystrophy Amenable to Skipping Exon 53
February 22, 2019 - An institutional effort to reduce the amount of opioids prescribed following lumbar surgery
February 22, 2019 - Family-history-based models perform better than non-family-history based models
February 22, 2019 - Failure to take statins leads to higher mortality rates | News Center
February 22, 2019 - New study explains why some patients report phantom sensations after limb amputation
February 22, 2019 - First motor-controlled heart valves implanted by Mainz University Medical Center
February 22, 2019 - Novel preclinical model mimics persistent interneuron loss seen in preterm infants
February 22, 2019 - Global health burden of glaucoma has increased, study reveals
February 22, 2019 - A holistic approach key to minimize treatment complexity in patients with interstitial lung disease
February 22, 2019 - 1 in 10 middle-aged Chinese adults are at high risk for heart disease, finds study
February 22, 2019 - More than half a million breast cancer patient’s lives saved by improvements in treatment
February 22, 2019 - Study finds no evidence that tougher policies prevent teenage cannabis use
February 22, 2019 - New blood test detects genetic disorders in fetuses
February 22, 2019 - Lower Self-Perception Observed in Children With Amblyopia
February 22, 2019 - Up to 15 percent of children have sleep apnea, yet 90 percent go undiagnosed
February 22, 2019 - Rare pulmonary defect prompts parents’ nationwide search for answers | News Center
February 22, 2019 - Lesbian and bisexual women at greater risk of being overweight, study finds
February 22, 2019 - UQ research may explain why vitamin D is essential for brain health
February 22, 2019 - Heart Attacks Rising Among Younger Women
February 22, 2019 - How your smartphone is affecting your relationship
February 22, 2019 - Orthopaedic surgeon receives prestigious award, $10 million grant | News Center
February 22, 2019 - New sepsis test could save thousands of lives
February 22, 2019 - Cervical cancer could be eradicated by 2100
February 21, 2019 - Sustained smoking cessation can lower risk of seropositive RA
February 21, 2019 - Thousands with chronic UTIs are not receiving the treatment they need
February 21, 2019 - Are teens getting high on social media? The surprising study seeking the pot-Instagram link
February 21, 2019 - Stanford expands biobank services | News Center
February 21, 2019 - Scientists identify link between drinking contexts and early onset intoxication among adolescents
February 21, 2019 - Strong social support may reduce cardiovascular disease risk in postmenopausal women
February 21, 2019 - Rapid expansion of interventions could prevent up to 13 million cases of cervical cancer within 50 years
February 21, 2019 - Motif Bio Receives Complete Response Letter From The FDA
February 21, 2019 - Researchers map previously unknown disease in children
February 21, 2019 - A skeptical look at popular diets: Going gluten-free
February 21, 2019 - Podcast: KHN’s ‘What The Health?’ How Safe Are Your Supplements?
February 21, 2019 - Factors associated with increased risk of developing surgical site infections
February 21, 2019 - Anticipatory signals in eye movements can help measure attentive capacity, learning with greater precision
February 21, 2019 - Study explores daily exposure to indoor air pollutants
February 21, 2019 - Evening exercise does not negatively affect sleep, may also reduce hunger
February 21, 2019 - Artificial intelligence technique can be used to identify alcohol misuse in trauma setting
February 21, 2019 - Overweight, obesity in adolescence associated with increased risk of renal cancer later in life
February 21, 2019 - BGU develops new AI platform for monitoring and predicting ALS progression
February 21, 2019 - Researchers discover a new promising target to improve HIV vaccines
February 21, 2019 - Brief Anesthesia in Infancy Does Not Mar Neurodevelopment
February 21, 2019 - Gaming system helps with autism diagnosis
February 21, 2019 - Heart Disease: Six Things Women Should Know
February 21, 2019 - More States Say Doctors Must Offer Overdose Reversal Drug Along With Opioids
February 21, 2019 - Researchers explore case studies focused on industries that kill more people than employed
February 21, 2019 - Only half of GP practice buildings are fit for purpose
February 21, 2019 - Intense exercise, fasting and hormones can enhance waste-protein removal, study shows
February 21, 2019 - Scientists can monitor brain activity to predict epileptic seizures few minutes in advance
February 21, 2019 - Study quantifies hepatic and intestinal mRNA expression of Ugt isoforms in rats
February 21, 2019 - ‘Apple-Shaped’ Body? ‘Pear-Shaped’? Your Genes May Tell
February 21, 2019 - Can we repair the brain? The promise of stem cell technologies for treating Parkinson’s disease
February 21, 2019 - Trump Plan To Beat HIV Hits Rough Road In Rural America
February 21, 2019 - PENTAX Medical introduces new electrosurgical and argon plasma coagulation platforms
February 21, 2019 - Trump plan to beat HIV hits rough road in rural America
February 21, 2019 - Eating blueberries every day could help decrease blood pressure
February 21, 2019 - ‘No Second Chances’ report calls for new measures to combat cardiovascular disease in Australia
February 21, 2019 - Mayo clinic researchers discuss local case studies of leprosy
Potential arthritis treatment prevents cartilage breakdown

Potential arthritis treatment prevents cartilage breakdown

image_pdfDownload PDFimage_print
Six days after treatment with IGF-1 carried by dendrimer nanoparticles (blue), the particles have penetrated through the cartilage of the knee joint. Credit: Brett Geiger and Jeff Wyckoff

Osteoarthritis, a disease that causes severe joint pain, affects more than 20 million people in the United States. Some drug treatments can help alleviate the pain, but there are no treatments that can reverse or slow the cartilage breakdown associated with the disease.

In an advance that could improve the treatment options available for osteoarthritis, MIT engineers have designed a new material that can administer drugs directly to the cartilage. The material can penetrate deep into the cartilage, delivering drugs that could potentially heal damaged tissue.

“This is a way to get directly to the cells that are experiencing the damage, and introduce different kinds of therapeutics that might change their behavior,” says Paula Hammond, head of MIT’s Department of Chemical Engineering, a member of MIT’s Koch Institute for Integrative Cancer Research, and the senior author of the study.

In a study in rats, the researchers showed that delivering an experimental drug called insulin-like growth factor 1 (IGF-1) with this new material prevented cartilage breakdown much more effectively than injecting the drug into the joint on its own.

Brett Geiger, an MIT graduate student, is the lead author of the paper, which appears in the Nov. 28 issue of Science Translational Medicine. Other authors are Sheryl Wang, an MIT graduate student, Robert Padera, an associate professor of pathology at Brigham and Women’s Hospital, and Alan Grodzinsky, an MIT professor of biological engineering.

Better delivery

Osteoarthritis is a progressive disease that can be caused by a traumatic injury such as tearing a ligament; it can also result from gradual wearing down of cartilage as people age. A smooth connective tissue that protects the joints, cartilage is produced by cells called chondrocytes but is not easily replaced once it is damaged.

Previous studies have shown that IGF-1 can help regenerate cartilage in animals. However, many osteoarthritis drugs that showed promise in animal studies have not performed well in clinical trials.

The MIT team suspected that this was because the drugs were cleared from the joint before they could reach the deep layer of chondrocytes that they were intended to target. To overcome that, they set out to design a material that could penetrate all the way through the cartilage.

The nanocarrier treatment reduced cartilage degeneration in the knees of rats with joint injuries (bottom right) compared to untreated rodents (top left, degeneration outlined in red). Credit: B.C. Geiger et al., Science Translational Medicine (2018)

The sphere-shaped molecule they came up with contains many branched structures called dendrimers that branch from a central core. The molecule has a positive charge at the tip of each of its branches, which helps it bind to the negatively charged cartilage. Some of those charges can be replaced with a short flexible, water-loving polymer, known as PEG, that can swing around on the surface and partially cover the positive charge. Molecules of IGF-1 are also attached to the surface.

When these particles are injected into a joint, they coat the surface of the cartilage and then begin diffusing through it. This is easier for them to do than it is for free IGF-1 because the spheres’ positive charges allow them to bind to cartilage and prevent them from being washed away. The charged molecules do not adhere permanently, however. Thanks to the flexible PEG chains on the surface that cover and uncover charge as they move, the molecules can briefly detach from cartilage, enabling them to move deeper into the tissue.

“We found an optimal charge range so that the material can both bind the tissue and unbind for further diffusion, and not be so strong that it just gets stuck at the surface,” Geiger says.

Once the particles reach the chondrocytes, the IGF-1 molecules bind to receptors on the cell surfaces and stimulate the cells to start producing proteoglycans, the building blocks of cartilage and other connective tissues. The IGF-1 also promotes cell growth and prevents cell death.

Joint repair

When the researchers injected the particles into the knee joints of rats, they found that the material had a half-life of about four days, which is 10 times longer than IGF-1 injected on its own. The drug concentration in the joints remained high enough to have a therapeutic effect for about 30 days. If this holds true for humans, patients could benefit greatly from joint injections—which can only be given monthly or biweekly—the researchers say.

In the animal studies, the researchers found that cartilage in injured joints treated with the nanoparticle-drug combination was far less damaged than cartilage in untreated joints or joints treated with IGF-1 alone. The joints also showed reductions in joint inflammation and bone spur formation.

Cartilage in rat joints is about 100 microns thick, but the researchers also showed that their particles could penetrate chunks of cartilage up to 1 millimeter—the thickness of cartilage in a human joint.

“That is a very hard thing to do. Drugs typically will get cleared before they are able to move through much of the cartilage,” Geiger says. “When you start to think about translating this technology from studies in rats to larger animals and someday humans, the ability of this technology to succeed depends on its ability to work in thicker cartilage.”

The researchers began developing this material as a way to treat osteoarthritis that arises after traumatic injury, but they believe it could also be adapted to treat age-related osteoarthritis. They now plan to explore the possibility of delivering different types of drugs, such as other growth factors, drugs that block inflammatory cytokines, and nucleic acids such as DNA and RNA.


Explore further:
Scientists uncover why knee joint injury leads to osteoarthritis

More information:
B.C. Geiger el al., “Cartilage-penetrating nanocarriers improve delivery and efficacy of growth factor treatment of osteoarthritis,” Science Translational Medicine (2018). stm.sciencemag.org/lookup/doi/ … scitranslmed.aat8800

Journal reference:
Science Translational Medicine

Provided by:
Massachusetts Institute of Technology

About author

Related Articles