Breaking News
May 3, 2019 - Vaping and Smoking May Signal Greater Motivation to Quit
May 3, 2019 - Dementia looks different in brains of Hispanics
May 3, 2019 - Short-Staffed Nursing Homes See Drop In Medicare Ratings
May 3, 2019 - Study of teens with eating disorders explores how substance users differ from non-substance users
May 3, 2019 - Scientists develop new video game that may help in the study of Alzheimer’s
May 3, 2019 - Arc Bio introduces Galileo Pathogen Solution product line at ASM Clinical Virology Symposium
May 3, 2019 - Cornell University study uncovers relationship between starch digestion gene and gut bacteria
May 3, 2019 - How to Safely Use Glucose Meters and Test Strips for Diabetes
May 3, 2019 - Anti-inflammatory drugs ineffective for prevention of Alzheimer’s disease
May 3, 2019 - Study tracks Pennsylvania’s oil and gas waste-disposal practices
May 3, 2019 - Creating a better radiation diagnostic test for astronauts
May 3, 2019 - Vegans are often deficient in these four nutrients
May 3, 2019 - PPDC announces seed grants to develop medical devices for children
May 3, 2019 - Study maps out the frequency and impact of water polo head injuries
May 3, 2019 - Research on Reddit identifies risks associated with unproven treatments for opioid addiction
May 3, 2019 - Good smells may help ease tobacco cravings
May 3, 2019 - Medical financial hardship found to be very common among people in the United States
May 3, 2019 - Researchers develop multimodal system for personalized post-stroke rehabilitation
May 3, 2019 - Study shows significant mortality benefit with CABG over percutaneous coronary intervention
May 3, 2019 - Will gene-editing of human embryos ever be justifiable?
May 3, 2019 - FDA Approves Dengvaxia (dengue vaccine) for the Prevention of Dengue Disease in Endemic Regions
May 3, 2019 - Why Tonsillitis Keeps Coming Back
May 3, 2019 - Fighting the opioid epidemic with data
May 3, 2019 - Maggot sausages may soon be a reality
May 3, 2019 - Deletion of ATDC gene prevents development of pancreatic cancer in mice
May 2, 2019 - Targeted Therapy Promising for Rare Hematologic Cancer
May 2, 2019 - Alzheimer’s disease is a ‘double-prion disorder,’ study shows
May 2, 2019 - Reservoir bugs: How one bacterial menace makes its home in the human stomach
May 2, 2019 - Clinical, Admin Staff From Cardiology Get Sneak Peek at Epic
May 2, 2019 - Depression increases hospital use and mortality in children
May 2, 2019 - Vicon and NOC support CURE International to create first gait lab in Ethiopia
May 2, 2019 - Researchers use 3D printer to make paper organs
May 2, 2019 - Viral infection in utero associated with behavioral abnormalities in offspring
May 2, 2019 - U.S. Teen Opioid Deaths Soaring
May 2, 2019 - Opioid distribution data should be public
May 2, 2019 - In the Spotlight: “I’m learning every single day”
May 2, 2019 - 2019 Schaefer Scholars Announced
May 2, 2019 - Podcast: KHN’s ‘What The Health?’ Bye-Bye, ACA, And Hello ‘Medicare-For-All’?
May 2, 2019 - Study describes new viral molecular evasion mechanism used by cytomegalovirus
May 2, 2019 - SLU study suggests a more equitable way for Medicare reimbursement
May 2, 2019 - Scientists discover first gene involved in lower urinary tract obstruction
May 2, 2019 - Researchers identify 34 genes associated with increased risk of ovarian cancer
May 2, 2019 - Many low-income infants receive formula in the first few days of life, finds study
May 2, 2019 - Global study finds high success rate for hip and knee replacements
May 2, 2019 - Taking depression seriously: What is it?
May 2, 2019 - With Head Injuries Mounting, Will Cities Put Their Feet Down On E-Scooters?
May 2, 2019 - Scientists develop small fluorophores for tracking metabolites in living cells
May 2, 2019 - Study casts new light into how mothers’ and babies’ genes influence birth weight
May 2, 2019 - Researchers uncover new brain mechanisms regulating body weight
May 2, 2019 - Organ-on-chip systems offered to Asia-Pacific regions by Sydney’s AXT
May 2, 2019 - Adoption of new rules drops readmission penalties against safety net hospitals
May 2, 2019 - Kids and teens who consume zero-calorie sweetened beverages do not save calories
May 2, 2019 - Improved procedure for cancer-related erectile dysfunction
May 2, 2019 - Hormone may improve social behavior in autism
May 2, 2019 - Alzheimer’s disease may be caused by infectious proteins called prions
May 2, 2019 - Even Doctors Can’t Navigate Our ‘Broken Health Care System’
May 2, 2019 - Study looks at the impact on criminal persistence of head injuries
May 2, 2019 - Honey ‘as high in sugars as table sugar’
May 2, 2019 - Innovations to U.S. food system could help consumers in choosing healthy foods
May 2, 2019 - FDA Approves Mavyret (glecaprevir and pibrentasvir) as First Treatment for All Genotypes of Hepatitis C in Pediatric Patients
May 2, 2019 - Women underreport prevalence and intensity of their own snoring
May 2, 2019 - Concussion summit focuses on science behind brain injury
May 2, 2019 - Booker’s Argument For Environmental Justice Stays Within The Lines
May 2, 2019 - Cornell research explains increased metastatic cancer risk in diabetics
May 2, 2019 - Mount Sinai study provides fresh insights into cellular pathways that cause cancer
May 2, 2019 - Researchers to study link between prenatal pesticide exposures and childhood ADHD
May 2, 2019 - CoGEN Congress 2019: Speakers’ overviews
May 2, 2019 - A new strategy for managing diabetic macular edema in people with good vision
May 2, 2019 - Sagent Pharmaceuticals Issues Voluntary Nationwide Recall of Ketorolac Tromethamine Injection, USP, 60mg/2mL (30mg per mL) Due to Lack of Sterility Assurance
May 2, 2019 - Screen time associated with behavioral problems in preschoolers
May 2, 2019 - Hormone reduces social impairment in kids with autism | News Center
May 2, 2019 - Researchers synthesize peroxidase-mimicking nanozyme with low cost and superior catalytic activity
May 2, 2019 - Study results of a potential drug to treat Type 2 diabetes in children announced
May 2, 2019 - Multigene test helps doctors to make effective treatment decisions for breast cancer patients
May 2, 2019 - UNC School of Medicine initiative providing unique care to dementia patients
May 2, 2019 - Nestlé Health Science and VHP join forces to launch innovative COPES program for cancer patients
May 2, 2019 - Study examines how our brain generates consciousness and loses it during anesthesia
May 2, 2019 - Transition Support Program May Aid Young Adults With Type 1 Diabetes
May 2, 2019 - Study shows how neutrophils exacerbate atherosclerosis by inducing smooth muscle-cell death
May 2, 2019 - Research reveals complexity of how we make decisions
New drug combination could kill melanoma cells more effectively, study shows

New drug combination could kill melanoma cells more effectively, study shows

A class of cancer drugs called protein kinase inhibitors is one of the most effective treatments for melanoma. However, in many cases, tumors eventually become resistant to the drugs and cause a relapse in the patient.

A new study from MIT suggests that combining kinase inhibitors with experimental drugs known as ribonucleases could lead to better results. In tests with human cancer cells, the researchers found that the two drugs given together kill cells much more effectively than either drug does on its own. The combination could also help to prevent tumors from developing drug resistance, says Ronald Raines, the Firmenich Professor of Chemistry at MIT.

“We discovered that this ribonuclease drug could be paired favorably with other cancer chemotherapeutic agents, and not only that, the pairing made logical sense in terms of the underlying biochemistry,” Raines says.

Raines is the senior author of the study, which appears in the Dec. 3 issue of Molecular Cancer Therapeutics and was posted in the journal’s “online first” section on Nov. 20. Trish Hoang, a former graduate student at the University of Wisconsin at Madison, is the lead author of the study.

Unexpected link

Ribonucleases are enzymes produced by all human cells that break down RNA molecules. They degrade cellular RNA that is no longer needed, and they help to defend against viral RNA. Because of ribonucleases’ ability to kill cells by damaging their RNA, Raines has been working on developing these enzymes as cancer drugs for about two decades.

His lab has also been studying the protein that has evolved to help cells defend against ribonucleases, which can be very destructive if unchecked. This protein, called ribonuclease inhibitor, binds to ribonucleases with a half-life of at least three months — the strongest naturally occurring protein-binding interaction ever recorded. “That means that should ribonuclease invade cells, there is an unbelievable defense system,” Raines says.

To create a ribonuclease drug for testing, the researchers modified it so that ribonuclease inhibitors don’t bind as tightly — the half-life for the interaction is only a few seconds. One version of this drug is now in a phase 1 clinical trial, where it has stabilized the disease in about 20 percent of patients.

In the new study, the researchers found an unexpected link between ribonucleases and enzymes called protein kinases (the targets of protein kinase inhibitors), which led them to discover that the two drugs can kill cancer cells much better when used together than either one can alone.

The discovery came about when Hoang decided to try to produce the ribonuclease inhibitor protein in human cells instead of in E. coli, which Raines’ lab normally uses to produce the protein. She found that the human-cell-produced version, though identical in amino acid sequence to the protein produced by bacteria, bound to ribonucleases 100 times more strongly. This boosted the half-life of the interaction from months to decades — a protein-binding strength previously unheard of.

The researchers hypothesized that human cells were somehow modifying the inhibitor in a way that made it bind more tightly. Their studies revealed that, indeed, the inhibitor produced by human cells had phosphate groups added to it. This “phosphorylation” made the inhibitor bind much more strongly than anyone had previously suspected.

The researchers also discovered that phosphorylation was being carried out by protein kinases that are part of a cell signaling pathway called ERK. This pathway, which controls how cells respond to growth factors, is often overactive in cancer cells. The protein kinase inhibitors trametinib and dabrafenib, used to treat melanoma, can shut off the ERK pathway.

“This was a fortuitous intersection of two different strategies, because we reasoned that if we could use these drugs to deter the phosphorylation of ribonuclease inhibitor, then we could make the ribonucleases more potent at killing cancer cells,” Raines says.

Combating resistance

Tests of human melanoma cells supported this idea. The combination of a kinase inhibitor plus a ribonuclease was much deadlier to cancer cells, and the drugs were effective at lower concentrations. The kinase inhibitor prevented the ribonuclease inhibitor from being phosphorylated, making it weaker and allowing the ribonuclease more freedom to perform its function and destroy RNA.

If the same holds true in human patients, this approach could lead to reduced side effects and a lower chance of tumor cells becoming drug-resistant, Raines says. The researchers now hope to test this drug combination in mice, as a step toward testing the combination in clinical trials.

“We’re hoping that we can explore relationships with some of the many pharmaceutical companies that develop ERK pathway inhibitors, to team up and use our ribonuclease drug in concert with kinase inhibitors,” Raines says.

The researchers have also engineered mice that do not produce ribonucleases, which they plan to use to further study the biological functions of these enzymes.

Source:

http://news.mit.edu/2018/new-drug-combination-melanoma-1203

Tagged with:

About author

Related Articles