Breaking News
December 19, 2018 - RNA sequencing offers novel insights into the microbiome
December 19, 2018 - A promising, effective vaccine for common respiratory disease
December 19, 2018 - Protein may slow progression of emphysema, study finds
December 19, 2018 - Studying atrial fibrillation — and exploring new frontiers in precision health
December 19, 2018 - A New Way To Get College Students Through A Psychiatric Crisis — And Back To School
December 19, 2018 - Optum, UnitedHealthcare take action to help people affected by North Carolina winter storms
December 18, 2018 - Weight change in middle-aged, elderly Chinese Singaporeans related to increased risk of death
December 18, 2018 - Immune cells sacrifice themselves to protect us from invading bacteria
December 18, 2018 - Watching brain cells fire, with a twist of gravitational waves
December 18, 2018 - 2018 in Review
December 18, 2018 - Getting the Most Out of the CLARITY Technique
December 18, 2018 - NVF shoes provide a viable option for track and road racing
December 18, 2018 - CRISPR may restore effectiveness of chemotherapies used to treat lung cancer
December 18, 2018 - New app accurately measures and charts progression of skin wounds
December 18, 2018 - Persistent Discrimination ID’d Among Physician Mothers
December 18, 2018 - Cellphone technology developed to detect HIV
December 18, 2018 - A Stanford doctor hits the field with the 49ers — as their airway management physician
December 18, 2018 - The Rise of Anxiety Baking
December 18, 2018 - Just one night of sleep deprivation increases the urge to eat
December 18, 2018 - Study reveals mechanism behind failed remyelination in MS
December 18, 2018 - New genetic testing method increases the precision of biomarker analysis
December 18, 2018 - Simple technique to effectively treat underdiagnosed cause of debilitating chest pain
December 18, 2018 - Barbershop-based medical intervention can successfully lower blood pressure, new data shows
December 18, 2018 - Food labels have caused changes in consumers’ intake and industry’s use of key additives
December 18, 2018 - Sickest children could benefit from split liver transplants
December 18, 2018 - Scientists create patient-specific model to identify most effective treatment for appendix cancer
December 18, 2018 - ‘Little Foot’ endocast reveals a small brain combining ape-like and human-like features
December 18, 2018 - New therapy for childhood blindness shows ‘very promising’ results
December 18, 2018 - Researchers discover promising new compound against Buruli ulcer
December 18, 2018 - Study finds significant use of traditional, complementary and alternative medicines in Sub-Saharan Africa
December 18, 2018 - California Farm Implicated in Outbreak of E. coli Tied to Romaine Lettuce
December 18, 2018 - Mobile health has power to transform HIV/AIDS nursing
December 18, 2018 - Celiac Vaccine in Clinical Trials at Columbia
December 18, 2018 - Research into mental health first aid prompts practical guidance and resources for workplace
December 18, 2018 - Researcher conducts study to investigate peripheral blood markers of Alzheimer’s disease
December 18, 2018 - Researchers identify link between mucus in the small airways and pulmonary fibrosis
December 18, 2018 - EU Commission’s Health Policy Platform to host EKHA program on transplantation
December 18, 2018 - Survivors of childhood Hodgkin lymphoma have high risk of developing solid tumors
December 18, 2018 - Small changes to cafeteria design can get kids to eat healthier, new assessment tool finds
December 18, 2018 - From Machines to Cyclic Compounds
December 18, 2018 - New study reveals best assessment tools to establish delirium severity
December 18, 2018 - Rice University scientists develop synthetic protein switches to control electron flow
December 18, 2018 - Home-based pulmonary function monitoring for teens with Duchenne muscular dystrophy
December 18, 2018 - Researchers identify potential target for new breast cancer treatments
December 18, 2018 - National Biofilms Innovation Centre award grant to Neem Biotech for novel anti-biofilm drug development
December 18, 2018 - Artificial intelligence and the future of medicine
December 18, 2018 - Montana State doctoral student receives grant for her work to improve neuroscience tool
December 18, 2018 - Early postpartum initiation of opioids associated with persistent use
December 18, 2018 - Russian scientists identify molecular ‘switch’ that could be target for treatment of allergic asthma
December 18, 2018 - Surgeons make more mistakes in the operating room during stressful moments, shows study
December 18, 2018 - Immune cells explode themselves to inform about the danger of invading bacteria
December 18, 2018 - Malnutrition in children with Crohn’s disease linked with increased risk of surgical complications
December 18, 2018 - FDA Approves Motegrity (prucalopride) for Adults with Chronic Idiopathic Constipation (CIC)
December 18, 2018 - The long and short of CDK12
December 18, 2018 - Hologic’s Cynosure division introduces TempSure Surgical RF technology in North America
December 18, 2018 - CMR Surgical partners with Nicholson Center to launch U.S.-based training program for Versius
December 18, 2018 - Findings reinforce guidelines for cautious use of antipsychotics in younger populations
December 18, 2018 - Study finds new strains of hepatitis C virus in sub-Saharan Africa
December 18, 2018 - New battery-free, implantable device aids weight loss
December 18, 2018 - Parental alcohol use disorder associated with offspring marital outcomes
December 18, 2018 - Novel Breast Imaging Technique Might Cut Unnecessary Biopsies
December 18, 2018 - What can a snowflake teach us about how cancer spreads in the body?
December 18, 2018 - Management of nausea and vomiting in pregnancy costs the NHS more than previously thought
December 18, 2018 - Green leafy vegetables may reduce risk of developing liver steatosis
December 18, 2018 - Veganism linked to nutrient deficiencies and malnutrition if not planned correctly
December 18, 2018 - Coming Soon: A Tiny Robot You Swallow to Help You Stay Healthy
December 18, 2018 - Modified malaria drug proven effective at inhibiting Ebola
December 18, 2018 - Study finds epigenetic differences in the brains of individuals with schizophrenia
December 18, 2018 - Fitness instructors’ motivational comments influence women’s body satisfaction
December 18, 2018 - Study focuses on modification of lipid nanoparticles for successful brain cell targeting
December 18, 2018 - New gut bacteria may be effective against obesity, metabolic and mental disorders
December 18, 2018 - New two-in-one powder aerosol to upgrade fight against deadly superbugs in lungs
December 18, 2018 - Biofilms feed with swirling flows
December 17, 2018 - Study identifies specific neurological changes related to traumatic brain injury
December 17, 2018 - New study confirms geographic bias in lung allocation for transplant
December 17, 2018 - Research focuses on optimization of solid lipid nanoparticle that encapsulates Vinorelbine bitartrate
December 17, 2018 - Carpal tunnel syndrome – Genetics Home Reference
December 17, 2018 - A novel insulin accelerant
December 17, 2018 - Tips for caring for patients with disabilities, from a mother and physician
December 17, 2018 - Menopause-related sexual, urinary problems tied to worse quality of life
New massive sequencing platform implemented for double factor preimplantation genetic testing

New massive sequencing platform implemented for double factor preimplantation genetic testing

image_pdfDownload PDFimage_print

A research team from the Universitat Autònoma de Barcelona (UAB), in collaboration with the Blood and Tissue Bank of Catalonia, has managed to implement a massive sequencing platform for Preimplantation Genetic Testing (PGT) for the first time in history.

The research work has adapted the TruSight One (TSO) platform, one of today’s most complete genetic panels with over 4,800 genes responsible for the most common monogenetic (hereditary) diseases, to the Double Factor Preimplantation Genetic Testing (DF-PGT).

The study, published in PLoS ONE, was led by Joaquima Navarro and Jordi Benet, researchers from the UAB Department of Cellular Biology, Physiology and Immunology, and included the collaboration of the team led by Francisco Vidal from the Blood and Tissue Bank of Catalonia.

“We successfully managed to implement an innovative, promising and universal strategy, prepared for a simultaneous diagnosis of genetic mutations and chromosomal alterations within embryos obtained by in vitro fertilization (IVF), of benefit to the DF-PGT candidate families with mutations causing diseases included in the TSO platform. In addition, it only requires a single laboratory experiment and without the need previously to prepare the diagnosis methodology. This substantially speeds up the study process and the availability of the results of the family’s single gene disorders. Until now, there was a need to prepare the specific procedures before conducting the diagnosis for each of the mutations”, Joaquima Navarro points out.

The new tool will make it possible to diagnose mutations both directly and indirectly, which increases the level of security of the diagnosis. At the same time, it allows for the chromosomal characterization within embryos, for the totality of all 23 human chromosome pairs, and detects whether the embryo is aneuploid, with an abnormal number of chromosomes and therefore non-transferable, or euploid, with the correct number and therefore viable and with greater chances of implantation.

The team led by Professor Navarro developed the DF-PGT strategy in 2009. A pioneering technique successfully applied on numerous occasions since then, it consists in analyzing within one same IVF cycle the specific genetic mutations causing hereditary diseases, as well as a complete embryonic chromosomal endowment (cytogenetics) through a comparative genomic hybridization technique. This allows identifying and selecting embryos which are free of the diseases and chromosomal defects hindering their evolution. In 2009, 2013 and 2015, this group was the first ever to use another DF-PGT strategy to select healthy embryos and help different families birth healthy offsprings: twins free of the Von Hippel-Lindau syndrome, twins free of the Lynch syndrome, and two other healthy babies from two families at risk from sickle cell disease and cystic fibrosis, respectively. On those occasions, the scientists first had to prepare the diagnosis methods of the mutations responsible for the specific genetic disease; whereas in the current strategy proposed, no specific preparation is necessary.

Overcoming DNA Limitations in Embryonic Cells

The Next Generation Sequencing (NGS) techniques represent a giant leap forward in the quality of genetic analysis procedures, given that they permit studying millions of DNA sequences massively and simultaneously in one same experiment. These powerful tools are successfully being used for the characterization of blood and tissue samples, in which the amount of DNA is not a restricting factor.

“The proposed methodology overcomes the limitations existing until now. It was developed to be applied to samples of only 6-8 blastocyst trophoderm cells with the scheduling of a frozen embryo transfer cycle, in the case of the results indicating an absence of family diseases and embryo”, explains Joaquima Navarro.

Before implementing the new platform there was a need to determine which of the four most commonly used DNA amplification systems was most suitable for the adequate identification of mutations. Researchers were thus also the first ever to conduct a chromosomal characterization with the Nexus computational biology programme by using the TSO database.

“The tool is also of interest in PGTs with risk of chromosomal alterations due to advanced maternal age, alterations found in the father’s chromosomes, as well as in cases of repeated miscarriages. Also in cases of the oocytes of young donors, since a certain risk of aneuploidy has also been described”, the UAB researcher points out.

Researchers are confident that this new methodology will soon be available for use with the TSO panel or by applying it to new, even more complete panels, such as the ones capable of analyzing the whole exome or whole genome sequencing. They are also certain that in the middle term it will be applied simultaneously to many samples, thereby reducing its cost.

In addition to researchers from the UAB and the Blood and Tissue Bank of Catalonia, this study included the involvement of specialists from the Vall d’Hebron Research Institute (VHIR), the Puigvert Foundation, the Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), the Centre de Medicina Embrionària (CME), the Centre d’Infertilitat i Reproducció Humana (CIRH) and the August Pi i Sunyer Biomedical Research Institute (IDIBAPS).

“Our work represents a very important milestone in the line of research we conduct on preimplantation genetic testing. A field in which the UAB was at the forefront globally in the 1980s under the guidance of Professor of Cell Biology Josep Egozcue. We would have loved to share these results with him, he certainly would have been very satisfied”, Joaquima Navarro declares.

Source:

https://www.uab.cat/web/newsroom/news-detail/double-factor-preimplantation-genetic-testing-now-possible-through-massive-sequencing-techniques-1345668003610.html?noticiaid=1345778496881

Tagged with:

About author

Related Articles