Breaking News
January 17, 2019 - B-group vitamins may be beneficial for people with first episode psychosis
January 17, 2019 - Researchers demonstrate how manganese produces parkinsonian syndrome
January 17, 2019 - Researchers suggest link between personality type and attitude towards others’ bodies
January 17, 2019 - Mutant mice administered with cocaine failed to exhibit hyperactivity, shows study
January 17, 2019 - Health Tip: Understanding a Heart Murmur
January 17, 2019 - Gut protein mutations shield against spikes in glucose
January 17, 2019 - Engineered immune cells target broad range of pediatric solid tumors in mice | News Center
January 17, 2019 - Study finds link between high pesticide exposure and poor sense of smell among farmers
January 17, 2019 - New study finds only 13% of outpatient antibiotic prescriptions to be appropriate
January 17, 2019 - New project receives €8.65 million from EU and Canada to ease genomic, health data sharing
January 17, 2019 - Improvements in pharmacological study to fight cognitive impairment in schizophrenia
January 17, 2019 - Study looks at trends over time in oral antibiotic prescribing by dermatologists
January 17, 2019 - Most substance use disorder treatment facilities do not offer medication treatment
January 17, 2019 - Multiple sclerosis could benefit from stem cell therapy
January 17, 2019 - Researchers manipulate T cells to improve transplant success
January 17, 2019 - Put away your rulers and reach for your phone
January 17, 2019 - Integrated care to women with PMADs offered at several levels
January 17, 2019 - Researchers identify MANF as a rejuvenating factor in parabiosis
January 17, 2019 - Truncal mutations study suggests new direction in origins of cancer
January 17, 2019 - Beckman Coulter launches new ClearLLab 10C System for clinical flow cytometry lab
January 17, 2019 - Effects of linoleic acid on the body are largely dependent on genes, shows study
January 17, 2019 - Pre-injury exercise reduces damage to both muscles and nerves, study finds
January 17, 2019 - Minimizing Antibody Size to Maximize Research Potential
January 17, 2019 - Research finds large genome in tiny forest defoliator
January 17, 2019 - Technology helps reduce the yearning for unhealthy food
January 17, 2019 - Imec develops prototype cardiovascular device
January 17, 2019 - New Drug Application for Insomnia Disorder Treatment Lemborexant Submitted in the United States
January 17, 2019 - What you should know about teeth whitening
January 17, 2019 - Why Older Adults Should Eat More Protein (And Not Overdo Protein Shakes)
January 17, 2019 - Colorectal cancer mortality rates predicted to increase globally
January 17, 2019 - Scientists discover mutational signatures of tumor hypoxia
January 17, 2019 - New evidence shows how fever alters immune cells
January 17, 2019 - Researchers find new class of blood pressure-regulating peptides in vampire bat venom
January 17, 2019 - Promega to exhibit new Maxwell RSC48 platform at 2019 Festival of Genomics
January 17, 2019 - Study pinpoints immune cells that could be key to tackling hypertension
January 17, 2019 - Couples Intervention May Aid Partners of Diabetes Patients
January 17, 2019 - Your weight history may predict your heart failure risk
January 17, 2019 - Explore a cornucopia of accomplishments in prematurity research
January 17, 2019 - New study identifies four characteristics that predict severity of postpartum depression
January 17, 2019 - AHF urges United Nations to follow own mandate for protecting Ebola response efforts
January 17, 2019 - New, scalpel-free treatment for reducing Parkinson’s tremor gets FDA approval
January 17, 2019 - Neurobiologists uncover key component of how the human brain marks time
January 17, 2019 - LifeTime receives fund to develop a plan to embed its vision for healthier future
January 17, 2019 - WTC first responders at higher risk for head and neck cancers, study finds
January 17, 2019 - New NSF funded study may help physicians decrease brain injury deaths
January 17, 2019 - Ham bones contain peptides that could have cardioprotective effects
January 17, 2019 - Research finds how Candida albicans adapt to low oxygen levels to cause infection
January 17, 2019 - Cobra Biologics announces appointment of Dr Darrell Sleep as Director of Innovation
January 17, 2019 - Cellular protein that interacts with viruses appears to enable infection process of Zika virus
January 17, 2019 - Opioids Now More Deadly for Americans Than Traffic Accidents
January 17, 2019 - Women who start periods early are at greater risk of cardiovascular problems
January 17, 2019 - The brain-circuitry clash that keeps you from diving into that plate of ribs when you’re dining with royalty
January 17, 2019 - Poo transplant can successfully treat patients with ulcerative colitis
January 17, 2019 - Study suggests key role for glial cells in Parkinson’s disease
January 17, 2019 - Educational videos in clinical settings increase HPV vaccination rates among adolescents
January 17, 2019 - Better understanding of aggressive brain tumour
January 17, 2019 - Why is life expectancy in the U.S. going down? A Q&A
January 17, 2019 - The Electronics Industry Sees Money In Your Health
January 17, 2019 - Hypertension drug may improve effectiveness of ovarian cancer treatment
January 17, 2019 - Scientists reveal key mechanism in worms that controls cell’s response to stress
January 17, 2019 - How Patch Clamp Technology Can Benefit Ion Channel Research
January 16, 2019 - Researchers cultivate organoids that perfectly mimic blood vessels
January 16, 2019 - Sound Pharmaceuticals Advances Phase 2 Hearing Loss Clinical Trial in Cystic Fibrosis
January 16, 2019 - Unraveling the genetic causes of skin cancer
January 16, 2019 - Higher percentages of saturated fat in low-carb diets may not harm cholesterol levels, new analysis suggests
January 16, 2019 - Using bottled or tap water impacts health benefits of green tea
January 16, 2019 - Best trained alert dogs have potential to improve Type 1 diabetes patients’ quality of life
January 16, 2019 - States with lower incidence of melanoma have higher mortality rates
January 16, 2019 - Pollution on the London Underground found to be dangerously high
January 16, 2019 - Breast cancer cells in mice coaxed to turn into harmless fat cells
January 16, 2019 - Study connects the genetic background of autistic spectrum disorders with stem cell dysfunction
January 16, 2019 - When activated, ‘social’ brain circuits inhibit feeding behavior in mice | News Center
January 16, 2019 - How Exercise May Help Keep Our Memory Sharp
January 16, 2019 - Researchers identify a key regulator that stops excessive inflammation
January 16, 2019 - TGF-beta signaling pathway in uterine cells protects against cancer
January 16, 2019 - MD Anderson Cancer Center collaborates with Dragonfly for new immunotherapy drug clinical trials
January 16, 2019 - Drug Repurposing May Provide More Psychiatric Tx Options
January 16, 2019 - A new brain imaging study challenges the dominant theoretical model of autism spectrum disorders
January 16, 2019 - GoFundMe CEO: ‘Gigantic Gaps’ In Health System Showing Up In Crowdfunding
January 16, 2019 - Induced neuronal cells derived from fibroblasts are similar to neurons in the brain
Researchers identify and overcome barrier in CRISPR gene editing to treat muscular dystrophy

Researchers identify and overcome barrier in CRISPR gene editing to treat muscular dystrophy

image_pdfDownload PDFimage_print

The gene editing technique known as CRISPR is a revolutionary approach to treating inherited diseases. However, the tool has yet to be used to effectively treat long-term, chronic conditions. A research team led by Dongsheng Duan, PhD, at the University of Missouri School of Medicine has identified and overcome a barrier in CRISPR gene editing that may lay the foundation for sustained treatments using the technique.

CRISPR gene editing is inspired by the body’s natural defensive ability to fend off viruses. The technology enables researchers to alter DNA sequences by cutting out and replacing a mutation in the genome, which has the potential to treat a variety of genetic diseases and conditions. Duan, along with his collaborators at MU, the National Center for Advancing Translational Sciences at the National Institutes of Health and Duke University, are studying how to harness CRISPR to treat Duchenne muscular dystrophy (DMD).

Children with DMD have a gene mutation that interrupts the production of a protein known as dystrophin. Without dystrophin, muscle cells become weaker and eventually die. Many children lose the ability to walk, and muscles essential for breathing and heart function ultimately stop working.

“CRISPR essentially cuts out the mutation and stitches the gene back together,” said Duan, who serves as the Margaret Proctor Mulligan Professor in medical research in the Department of Molecular Microbiology and Immunology at the MU School of Medicine. “In order to do this, the ‘molecular scissors’ in CRISPR, known as Cas9, must know where to cut. The location to cut is flagged by a molecule called gRNA. We were surprised to find that by increasing the quantity of flags, we could extend the effectiveness of the therapy from three months to 18 months in our mouse model.”

Duan’s lab treated 6-week-old mice with DMD intravenously using CRISPR and looked for improvements at 18 months. They initially employed a strategy widely used by many researchers. In this approach, similar amounts of Cas9 and gRNA were administrated. While it worked well when injected directly into the muscle, this strategy yielded poor outcomes when the team tried to achieve long-term correction in all the muscles in the body. They found no dystrophin restoration in skeletal muscle and low-level dystrophin restoration in the heart — the treatment failed to stop disease progression.

When reviewing the results, the team found a disproportionate depletion of gRNA flags, meaning there were not enough gRNA to tell Cas9 where to cut. The team increased the number of gRNA flags and repeated the experiment. This new strategy significantly increased dystrophin restoration in both heart and skeletal muscle and reduced muscle scarring at 18 months. Additionally, muscle function and cardiac function were improved.

“Our results suggest that gRNA loss is a unique barrier for long-term systemic CRISPR therapy,” Duan said. “We believe this barrier can be overcome by increasing and optimizing gRNA doses. While this has exciting possibilities for improvements to DMD therapies, we believe this principle may also be applied to other CRISPR therapies for a range of other diseases and conditions.”

The researchers will continue to test and refine the approach in a mouse model before other models are explored. With more study, they are hopeful this insight may help lay the foundation for improved therapies using CRISPR gene editing.​

Source:

https://medicine.missouri.edu/news/researchers-overcome-hurdle-crispr-gene-editing-muscular-dystrophy

Tagged with:

About author

Related Articles