Breaking News
May 3, 2019 - Vaping and Smoking May Signal Greater Motivation to Quit
May 3, 2019 - Dementia looks different in brains of Hispanics
May 3, 2019 - Short-Staffed Nursing Homes See Drop In Medicare Ratings
May 3, 2019 - Study of teens with eating disorders explores how substance users differ from non-substance users
May 3, 2019 - Scientists develop new video game that may help in the study of Alzheimer’s
May 3, 2019 - Arc Bio introduces Galileo Pathogen Solution product line at ASM Clinical Virology Symposium
May 3, 2019 - Cornell University study uncovers relationship between starch digestion gene and gut bacteria
May 3, 2019 - How to Safely Use Glucose Meters and Test Strips for Diabetes
May 3, 2019 - Anti-inflammatory drugs ineffective for prevention of Alzheimer’s disease
May 3, 2019 - Study tracks Pennsylvania’s oil and gas waste-disposal practices
May 3, 2019 - Creating a better radiation diagnostic test for astronauts
May 3, 2019 - Vegans are often deficient in these four nutrients
May 3, 2019 - PPDC announces seed grants to develop medical devices for children
May 3, 2019 - Study maps out the frequency and impact of water polo head injuries
May 3, 2019 - Research on Reddit identifies risks associated with unproven treatments for opioid addiction
May 3, 2019 - Good smells may help ease tobacco cravings
May 3, 2019 - Medical financial hardship found to be very common among people in the United States
May 3, 2019 - Researchers develop multimodal system for personalized post-stroke rehabilitation
May 3, 2019 - Study shows significant mortality benefit with CABG over percutaneous coronary intervention
May 3, 2019 - Will gene-editing of human embryos ever be justifiable?
May 3, 2019 - FDA Approves Dengvaxia (dengue vaccine) for the Prevention of Dengue Disease in Endemic Regions
May 3, 2019 - Why Tonsillitis Keeps Coming Back
May 3, 2019 - Fighting the opioid epidemic with data
May 3, 2019 - Maggot sausages may soon be a reality
May 3, 2019 - Deletion of ATDC gene prevents development of pancreatic cancer in mice
May 2, 2019 - Targeted Therapy Promising for Rare Hematologic Cancer
May 2, 2019 - Alzheimer’s disease is a ‘double-prion disorder,’ study shows
May 2, 2019 - Reservoir bugs: How one bacterial menace makes its home in the human stomach
May 2, 2019 - Clinical, Admin Staff From Cardiology Get Sneak Peek at Epic
May 2, 2019 - Depression increases hospital use and mortality in children
May 2, 2019 - Vicon and NOC support CURE International to create first gait lab in Ethiopia
May 2, 2019 - Researchers use 3D printer to make paper organs
May 2, 2019 - Viral infection in utero associated with behavioral abnormalities in offspring
May 2, 2019 - U.S. Teen Opioid Deaths Soaring
May 2, 2019 - Opioid distribution data should be public
May 2, 2019 - In the Spotlight: “I’m learning every single day”
May 2, 2019 - 2019 Schaefer Scholars Announced
May 2, 2019 - Podcast: KHN’s ‘What The Health?’ Bye-Bye, ACA, And Hello ‘Medicare-For-All’?
May 2, 2019 - Study describes new viral molecular evasion mechanism used by cytomegalovirus
May 2, 2019 - SLU study suggests a more equitable way for Medicare reimbursement
May 2, 2019 - Scientists discover first gene involved in lower urinary tract obstruction
May 2, 2019 - Researchers identify 34 genes associated with increased risk of ovarian cancer
May 2, 2019 - Many low-income infants receive formula in the first few days of life, finds study
May 2, 2019 - Global study finds high success rate for hip and knee replacements
May 2, 2019 - Taking depression seriously: What is it?
May 2, 2019 - With Head Injuries Mounting, Will Cities Put Their Feet Down On E-Scooters?
May 2, 2019 - Scientists develop small fluorophores for tracking metabolites in living cells
May 2, 2019 - Study casts new light into how mothers’ and babies’ genes influence birth weight
May 2, 2019 - Researchers uncover new brain mechanisms regulating body weight
May 2, 2019 - Organ-on-chip systems offered to Asia-Pacific regions by Sydney’s AXT
May 2, 2019 - Adoption of new rules drops readmission penalties against safety net hospitals
May 2, 2019 - Kids and teens who consume zero-calorie sweetened beverages do not save calories
May 2, 2019 - Improved procedure for cancer-related erectile dysfunction
May 2, 2019 - Hormone may improve social behavior in autism
May 2, 2019 - Alzheimer’s disease may be caused by infectious proteins called prions
May 2, 2019 - Even Doctors Can’t Navigate Our ‘Broken Health Care System’
May 2, 2019 - Study looks at the impact on criminal persistence of head injuries
May 2, 2019 - Honey ‘as high in sugars as table sugar’
May 2, 2019 - Innovations to U.S. food system could help consumers in choosing healthy foods
May 2, 2019 - FDA Approves Mavyret (glecaprevir and pibrentasvir) as First Treatment for All Genotypes of Hepatitis C in Pediatric Patients
May 2, 2019 - Women underreport prevalence and intensity of their own snoring
May 2, 2019 - Concussion summit focuses on science behind brain injury
May 2, 2019 - Booker’s Argument For Environmental Justice Stays Within The Lines
May 2, 2019 - Cornell research explains increased metastatic cancer risk in diabetics
May 2, 2019 - Mount Sinai study provides fresh insights into cellular pathways that cause cancer
May 2, 2019 - Researchers to study link between prenatal pesticide exposures and childhood ADHD
May 2, 2019 - CoGEN Congress 2019: Speakers’ overviews
May 2, 2019 - A new strategy for managing diabetic macular edema in people with good vision
May 2, 2019 - Sagent Pharmaceuticals Issues Voluntary Nationwide Recall of Ketorolac Tromethamine Injection, USP, 60mg/2mL (30mg per mL) Due to Lack of Sterility Assurance
May 2, 2019 - Screen time associated with behavioral problems in preschoolers
May 2, 2019 - Hormone reduces social impairment in kids with autism | News Center
May 2, 2019 - Researchers synthesize peroxidase-mimicking nanozyme with low cost and superior catalytic activity
May 2, 2019 - Study results of a potential drug to treat Type 2 diabetes in children announced
May 2, 2019 - Multigene test helps doctors to make effective treatment decisions for breast cancer patients
May 2, 2019 - UNC School of Medicine initiative providing unique care to dementia patients
May 2, 2019 - Nestlé Health Science and VHP join forces to launch innovative COPES program for cancer patients
May 2, 2019 - Study examines how our brain generates consciousness and loses it during anesthesia
May 2, 2019 - Transition Support Program May Aid Young Adults With Type 1 Diabetes
May 2, 2019 - Study shows how neutrophils exacerbate atherosclerosis by inducing smooth muscle-cell death
May 2, 2019 - Research reveals complexity of how we make decisions
Overlooked part of cell’s internal machinery may hold key to treating acute myeloid leukemia

Overlooked part of cell’s internal machinery may hold key to treating acute myeloid leukemia

Many individuals forced to fight an exceptionally aggressive form of the blood cancer acute myeloid leukemia (AML) don’t survive more than five years.

The only cure–a bone marrow transplant–often isn’t suitable for these very sick patients. Now, an international team of scientists report in Nature Cell Biology on a long-overlooked part of a leukemic cell’s internal machinery called the spliceosome, where they found a hyperactive form of a protein called IRAK4 that sends cells on a cancer-causing frenzy.

When they targeted the hyperactive form of IRAK4 in laboratory tests to block its function in AML cells, and in patient AML cells transplanted into immunosuppressed mice, the experimental treatment led to a significant reduction of the leukemic cells. It also prolonged survival in the animal models, according to Daniel Starczynowski, PhD, the multi-institutional study’s senior investigator and part of the Cancer and Blood Diseases Institute at Cincinnati Children’s Hospital Medical Center.

In this study and other projects in the lab, Starczynowki and colleagues are testing existing drugs that can target hyperactive IRAK4 in leukemia cells. They also are developing a prospective drug that more effectively inhibits hyperactive IRAK4 to treat AML and its precursor disease, myelodysplastic syndromes (MDS).

Starczynowski said that with additional preclinical research and development, the researchers would like within a few years to have their still-unnamed IRAK4 inhibitor ready for initial clinical tests in AML patients. The need for new treatments is urgent, he said.

“There is very little we can do for these patients. Even new drugs now getting fast-tracked through the development process may only produce another six months of survival,” Starczynowski said. “The curative option is a bone marrow transplant, but most of these patients don’t qualify. The field is really desperate for something that can help these patients.”

The findings in this study, including use of IRAK4-inhibiting drugs, would potentially affect a subset of about 20 percent of AML-MDS patients, according to researchers. But that’s significant, they say. Now that they know to look more closely at this seemingly obscure, tiny molecular machine in the cell’s nucleus–the spliceosome–it creates a way to find genetic coding miscues that fuel other subsets of AML that also depend on a hyperactive IRAK4.

Sequencing in the Spliceosome

Although invisible to the naked eye, the spliceosome is important. In a process of dicing and splicing, the spliceosome edits out unnecessary snippets of RNA coding called introns or exons. It then splices the loose snipped ends of RNA back together so specific proteins will do their jobs correctly.

But in AML cells, there are mutations in a gene call U2AF1, which result in RNA splicing errors. When U2AF1 functions normally, the correct snipped ends of RNA are glued back together. But when a mutated form of U2AF1 produces incorrectly formed RNA molecules of IRAK4, it results in a version of IRAK4 protein with extra coding sequences called IRAK4-L (or long). Together they hijack the innate immune system’s molecular processes and trigger oncogenesis in myeloid blood cells.

Global Effort

Including first author Molly Smith, a graduate student and member of the Starczynowski lab, the study was a collaboration of eight institutions in the U.S. and the University of Oxford in England. The focus on IRAK4 started over five years ago when Cincinnati Children’s cancer biologist Kakajan Komurov–working on a separate research project–noticed that every time he analyzed cancerous cells from patients, he saw high levels of the IRAK4 protein with extra coding sequences.

After Komurov shared his observation with Starczynowski during a chance corridor encounter at work, they launched a new project that went on to include Cincinnati Children’s bioinformatician Nathan Salomonis, PhD, and Gaurav Choudhary, PhD, and Amit Verma, MD, at the Albert Einstein College of Medicine in Bronx, NY.

Also collaborating are investigators from the National Institutes of Health (NIH), the University of Cincinnati, and the Department of Medicine at Washington University in St. Louis.

Together the team was able to combine biological testing of leukemia models in the lab and a global analysis of genetic sequencing data by using bioinformatics and systems biology. They also were able to analyze data from the NIH’s massive Cancer Genome Atlas, essentially a digital encyclopedia of all the genes (and the known related processes) linked to cancer.

Because the preclinical results are from experiments in cell lines and mouse models, the researchers are careful to emphasize their findings may not translate clinically to human patients. Still, the researchers say they’re encouraged to have come far enough that the design of new and potentially effective targeted therapies is well underway for a blood cancer that has few such options.

The study will be available at this link after it publishes online.

Source:

https://www.cincinnatichildrens.org/news/release/2019/acute-myeloid-leukemia

Tagged with:

About author

Related Articles