Breaking News
January 17, 2018 - Bariatric surgery extends lifespan in obese patients, shows study
January 17, 2018 - Bristol-Myers Squibb Receives FDA Approval for Opdivo (nivolumab) as Adjuvant Therapy in Patients with Completely Resected Melanoma with Lymph Node Involvement or Metastatic Disease
January 17, 2018 - Ewww Moments in the ER: That’s Improbable!
January 17, 2018 - Booze may help or harm the heart, but income matters
January 17, 2018 - Top nutrients needed to boost mood and energy levels on Blue Monday
January 17, 2018 - Scientists develop unique technique to map elasticity of cell components
January 17, 2018 - Obesity surgery reduces the risk of death by half finds new study
January 17, 2018 - Raw Meat Not the Safest Choice for Your Dog or for You
January 17, 2018 - Men who lack HSD17B4 gene may be more susceptible to treatment-resistant prostate cancer
January 17, 2018 - High-Dose Aspirin Preferred for Kawasaki’s
January 17, 2018 - Study suggests risk management approach to combat EMS fatigue
January 17, 2018 - A new therapy against obesity
January 17, 2018 - Doctors warn against holding your nose and closing your mouth to contain a sneeze
January 17, 2018 - Measles outbreak alarms public health officials
January 17, 2018 - FDA Slaps Class Warning on Gadolinium Contrast Agents
January 17, 2018 - Distinct human mutations can alter the effect of medicine
January 17, 2018 - ASIT biotech’s new article presents clinical results of gp
January 17, 2018 - Alternative tobacco use by adolescents associated with greater odds of future cigarette smoking
January 17, 2018 - A High-Salt Diet Produces Dementia In Mice
January 17, 2018 - Scientists provide insights into crucial interaction for DNA repair
January 17, 2018 - Sanofi and Regeneron Announce Positive Topline Pivotal Results for PD-1 Antibody Cemiplimab in Advanced Cutaneous Squamous Cell Carcinoma
January 17, 2018 - Morning Break: Pfizer Kills AD/PD Pipeline; Trump Affirms His Mental Health; Humira Pricing Strategy
January 17, 2018 - Researchers see gene influencing performance of sleep-deprived people
January 17, 2018 - Fast food triggers the immune system making it hyperactive
January 17, 2018 - Scientists find increased risk of HIV outbreaks in Ukraine due to war-related migration
January 17, 2018 - New universal flu vaccine moves to clinical trial phase and could be a reality soon
January 17, 2018 - Cocaine de-addiction breakthrough shows promise
January 17, 2018 - FDA Accepts New Drug Application for Seysara (sarecycline) for the Treatment of Moderate to Severe Acne
January 17, 2018 - Robotic Telestenting; BP Cuff Smartwatch; Medicare Bundled Care
January 17, 2018 - New cellular approach found to control progression of chronic kidney disease
January 17, 2018 - Lamprey genes provide clues to repair spinal cord damage, finds study
January 17, 2018 - Tissue-based soft robot could lead to advances in bio-inspired robotics
January 17, 2018 - Mostly the healthy and wealthy Americans use mobile phone apps to track sleep habits
January 17, 2018 - FDA Alert: Varubi (rolapitant) Injectable Emulsion: Health Care Provider Letter
January 16, 2018 - NeuroBreak: Rough Days for Neuroscience Research; Another Migraine Drug Advances
January 16, 2018 - The ‘greatest pandemic in history’ was 100 years ago – but many of us still get the basic facts wrong
January 16, 2018 - Serena Williams Shares Childbirth Ordeal
January 16, 2018 - The Artificial Brain as Doctor
January 16, 2018 - Type 2 diabetes has hepatic origins
January 16, 2018 - Expert discusses how to identify, support individuals with drug or alcohol addiction in workplace
January 16, 2018 - Starting menstruation early increases risk of cardiovascular disease and stroke in later life
January 16, 2018 - CapsoVision receives CE Mark approval for use of CapsoCam Plus System in pediatric patients
January 16, 2018 - Researchers develop new dynamic statistical model to follow gene expressions over time
January 16, 2018 - Alzheimer’s ‘looks like me, it looks like you’
January 16, 2018 - By the Numbers: Physicians’ Economic Impact
January 16, 2018 - Sound Health | NIH News in Health
January 16, 2018 - Modifying baby formula doesn’t prevent type 1 diabetes in children
January 16, 2018 - Energy drinks dangerous for kids
January 16, 2018 - When you need a breast screening, should you get a 3-D mammogram?
January 16, 2018 - Johns Hopkins gets approval to perform HIV positive to HIV positive living donor kidney transplants
January 16, 2018 - The Salk Institute and Indivumed collaborate for cutting-edge cancer research
January 16, 2018 - Study reveals negative long-term effects of heavy cannabis use on brain function and behavior
January 16, 2018 - Many gym-goers injure themselves by pushing harder to be better than friends
January 16, 2018 - Risankizumab Meets All Primary Endpoints Reporting Positive Results in Fourth Pivotal Phase 3 Psoriasis Study
January 16, 2018 - Federal Junk Food Tax Feasible, Study Says
January 16, 2018 - Do girls have stronger teeth than boys?
January 16, 2018 - New high-sensitivity blood tests could aid faster diagnosis and treatment for heart attack
January 16, 2018 - How fatal mitochondrial diseases may strike offspring of families with no history of the conditions
January 16, 2018 - TherapeuticsMD Announces FDA Acceptance of New Drug Application and Prescription Drug User Fee Act (PDUFA) Date for TX-004HR
January 16, 2018 - Morning Break: Food Pharmacies; Obamacare Sign-ups Dip; Top Pot Studies
January 16, 2018 - Blood pressure declines 14 to 18 years before death
January 16, 2018 - ViLim Ball technology helps reduce uncontrollable shaking hands
January 16, 2018 - Researchers use immune-mimicking biomaterial scaffolds to fast track T cell therapies
January 16, 2018 - In Wisconsin, hopes rise for production of a lifesaving radioactive isotope
January 16, 2018 - Researchers develop software to better predict risk of leakage around aortic stents
January 16, 2018 - Bile acids could directly burn away lipids in the fat depots
January 16, 2018 - Cycling does not negatively impact sexual and urinary health finds study
January 16, 2018 - Severe peer victimization in childhood may contribute to mental health issues in adolescence
January 16, 2018 - Exelixis Announces U.S. FDA Approval of Cabometyx (cabozantinib) Tablets for Previously Untreated Advanced Renal Cell Carcinoma
January 16, 2018 - Just How Often Do Patients Turn Post-Surgical Opioids Into a Habit?
January 16, 2018 - Opioid addiction – Genetics Home Reference
January 16, 2018 - Incomplete revascularization in PCI linked to higher mortality
January 16, 2018 - Machine learning algorithm uses brain scans to predict language ability in deaf children
January 16, 2018 - Penn scientists identify new therapeutic target for treatment of melanoma
January 16, 2018 - The London Clinic exhibits innovative technology to treat Parkinson’s disease at Arab Health
January 16, 2018 - Early influenza testing is critical to prevent serious complications
January 16, 2018 - Study Gets to the Core of Back Pain in Runners
January 16, 2018 - Year in Review: Ophthalmology | Medpage Today
January 16, 2018 - ClinicalTrials.gov: Marijuana Use
January 16, 2018 - Researchers create novel compound targeting melanoma cells
Discovery of key protein’s structure may help improve drug design

Discovery of key protein’s structure may help improve drug design

image_pdfDownload PDFimage_print

Scientists at The Scripps Research Institute (TSRI) have peered deep into the heart of a key protein used in drug design and discovered dynamic structural features that may lead to new ways to target diseases. The protein, called the A2A adenosine receptor (A2aAR), is a member of the G-protein-coupled receptor (GPCR) family, which are the targets of roughly 40 percent of all approved pharmaceuticals.

The new, more detailed image of A2aAR’s signaling mechanism reveals key parts of its inner workings, including an amino acid that acts like a “toggle switch” to control signaling across the cell membrane.

“This basic knowledge is potentially helpful for improving drug design,” says Nobel laureate Kurt Wthrich, PhD, the Cecil H. and Ida M. Green Professor of Structural Biology at TSRI and senior author of the study.

The findings were published today in the journal Cell.

Imaging technique reveals how protein changes shape

All human cells contain A2aAR and other GPCRs embedded in their plasma membrane. More than 800 GPCRs have been discovered in the human body, and each has a role in regulating a bodily function. For example, A2aAR regulates blood flow and inflammation and mediates the effects of caffeine. A2aAR is also a validated target for treating Parkinson’s disease and a relatively new target for targeting cancers.

“GPCRs do just about everything you can imagine,” says Wthrich. “But for a long time, drug design was being done without knowing how GPCRs looked.”

For the new study, the researchers aimed to better understand the relationship between A2aAR function and dynamic changes in its structure to help inform drug design.

The research built on previous studies where scientists used an imaging technique called x-ray crystallography to determine A2aAR’s three-dimensional structure. The images showed that A2aAR looks like a chain that crisscrosses the cell membrane and has an opening on the side facing out of the cell. The region of the GPCR structure that sticks out of the membrane interacts with drugs and other molecules to signal to partner proteins inside the cell.

Although crystal structures provided a key outline of the receptor’s shape in inactive and active-like states, they could not show motion and changes in structure when A2aAR meets new binding partners, such as pharmaceutical candidates. In short, the researchers in the new study needed to investigate why A2aAR works the way it does.

To solve this problem, the researchers used a technique called nuclear magnetic resonance (NMR) spectroscopy, which creates strong magnetic fields to locate the positions of probes in a sample. Wthrich is a world-renowned leader in the NMR field and won the Nobel Prize in Chemistry in 2002 for pioneering work in NMR to study the structures of biological molecules. With NMR, scientists can determine the structures of proteins and study their dynamic properties in solution at physiological temperatures–the way they exist in the human body.

In work spearheaded by TSRI’s Matthew Eddy, PhD, first author of the new study, the researchers used NMR to observe A2aAR in many different conformations, shedding light on how it changes shape on the surface of human cells in response to drug treatments.

Importantly, NMR let the team visualize changes in the internal architecture of A2aAR. This took them beyond previous solution NMR studies, which focused on the technically less demanding observation of NMR-observable probes attached to flexible parts of GPCRs, mostly located at or near the surface of the receptor. The approach in the new study enabled researchers to follow the effects of drug binding at the extracellular surface on changes in protein structure and dynamics at the intracellular surface–the structural basis of signal transfer–across the heart of the GPCR.

It was like the researchers had seen a car, and with NMR, they could finally inspect its engine.

Rethinking how we design drugs

Two details in A2aAR’s structure gave researchers insight into how future drugs could manipulate the receptor. One key finding was that replacing one particular amino acid in the receptor’s center destroyed the receptor’s ability to send signals into the cell.

“With this finding, we can say ‘A-ha! It is this change in structure that kills the signaling activity.’ Maybe we can make a change in a drug to overcome this limit,” says Wthrich.

The researchers also revealed the activity of a “toggle switch” in A2aAR. Previous studies suggested that one of the tryptophan amino acids in A2aAR flips up and down in concert with A2aAR’s activity. With NMR, the scientists directly observed this unique tryptophan as it changed orientations in response to different drugs. Chemists could potentially modify drugs to manipulate this switch and control A2aAR signaling.

The researchers emphasize that this new study is potentially relevant for much of the large family of GPCRs. In fact, structural details from this study could apply to more than 600 “class A” GPCRs in our bodies.

Source:

https://www.scripps.edu/news/press/2017/20171228wuthrich.html

Tagged with:

About author

Related Articles