Breaking News
January 17, 2018 - Lactation May Lower T2D Risk in Younger Women
January 17, 2018 - New Atopic Dermatitis Yardstick provides practical guidance and management insights
January 17, 2018 - New biodegradable pressure sensor could help monitor serious health conditions
January 17, 2018 - HSS orders Sectra’s 3D pre-operative planning solution for improving patient outcomes
January 17, 2018 - Study identifies six new genes regions associated with diabetes
January 17, 2018 - Women do not receive timely diagnosis for heart disease
January 17, 2018 - AbbVie’s Upadacitinib Shows Positive Results as Monotherapy in Phase 3 Rheumatoid Arthritis Study, Meeting All Primary and Key Secondary Endpoints
January 17, 2018 - Should President Trump’s Physical Include a Cognitive Screen?
January 17, 2018 - Could gene therapy someday eliminate HIV?
January 17, 2018 - Researchers identify new anti-inflammatory drug target
January 17, 2018 - Loxo Oncology Initiates Rolling Submission of New Drug Application to U.S. Food and Drug Administration for Larotrectinib for the Treatment of TRK Fusion Cancers
January 17, 2018 - Trunk Imaging Tied to Higher Nephrectomy Risk
January 17, 2018 - Campaigners incensed at failings in Africa AIDS war
January 17, 2018 - Research opens door to development of new treatment for type 2 diabetes
January 17, 2018 - Bariatric surgery extends lifespan in obese patients, shows study
January 17, 2018 - Bristol-Myers Squibb Receives FDA Approval for Opdivo (nivolumab) as Adjuvant Therapy in Patients with Completely Resected Melanoma with Lymph Node Involvement or Metastatic Disease
January 17, 2018 - Ewww Moments in the ER: That’s Improbable!
January 17, 2018 - Methods from optogenetics, machine learning should help improve treatment options for stroke patients
January 17, 2018 - Booze may help or harm the heart, but income matters
January 17, 2018 - Three-dimensional organization of genome plays key role in gene expression, cell fate
January 17, 2018 - Scientists identify six new gene regions that may help treat type 1 diabetes
January 17, 2018 - Top nutrients needed to boost mood and energy levels on Blue Monday
January 17, 2018 - Scientists develop unique technique to map elasticity of cell components
January 17, 2018 - Obesity surgery reduces the risk of death by half finds new study
January 17, 2018 - Raw Meat Not the Safest Choice for Your Dog or for You
January 17, 2018 - Men who lack HSD17B4 gene may be more susceptible to treatment-resistant prostate cancer
January 17, 2018 - High-Dose Aspirin Preferred for Kawasaki’s
January 17, 2018 - Study suggests risk management approach to combat EMS fatigue
January 17, 2018 - A new therapy against obesity
January 17, 2018 - Doctors warn against holding your nose and closing your mouth to contain a sneeze
January 17, 2018 - Measles outbreak alarms public health officials
January 17, 2018 - FDA Slaps Class Warning on Gadolinium Contrast Agents
January 17, 2018 - Distinct human mutations can alter the effect of medicine
January 17, 2018 - ASIT biotech’s new article presents clinical results of gp
January 17, 2018 - Alternative tobacco use by adolescents associated with greater odds of future cigarette smoking
January 17, 2018 - A High-Salt Diet Produces Dementia In Mice
January 17, 2018 - Scientists provide insights into crucial interaction for DNA repair
January 17, 2018 - Sanofi and Regeneron Announce Positive Topline Pivotal Results for PD-1 Antibody Cemiplimab in Advanced Cutaneous Squamous Cell Carcinoma
January 17, 2018 - Morning Break: Pfizer Kills AD/PD Pipeline; Trump Affirms His Mental Health; Humira Pricing Strategy
January 17, 2018 - Researchers see gene influencing performance of sleep-deprived people
January 17, 2018 - Fast food triggers the immune system making it hyperactive
January 17, 2018 - Scientists find increased risk of HIV outbreaks in Ukraine due to war-related migration
January 17, 2018 - New universal flu vaccine moves to clinical trial phase and could be a reality soon
January 17, 2018 - Cocaine de-addiction breakthrough shows promise
January 17, 2018 - FDA Accepts New Drug Application for Seysara (sarecycline) for the Treatment of Moderate to Severe Acne
January 17, 2018 - Robotic Telestenting; BP Cuff Smartwatch; Medicare Bundled Care
January 17, 2018 - New cellular approach found to control progression of chronic kidney disease
January 17, 2018 - Lamprey genes provide clues to repair spinal cord damage, finds study
January 17, 2018 - Tissue-based soft robot could lead to advances in bio-inspired robotics
January 17, 2018 - Mostly the healthy and wealthy Americans use mobile phone apps to track sleep habits
January 17, 2018 - FDA Alert: Varubi (rolapitant) Injectable Emulsion: Health Care Provider Letter
January 16, 2018 - NeuroBreak: Rough Days for Neuroscience Research; Another Migraine Drug Advances
January 16, 2018 - The ‘greatest pandemic in history’ was 100 years ago – but many of us still get the basic facts wrong
January 16, 2018 - Serena Williams Shares Childbirth Ordeal
January 16, 2018 - The Artificial Brain as Doctor
January 16, 2018 - Type 2 diabetes has hepatic origins
January 16, 2018 - Expert discusses how to identify, support individuals with drug or alcohol addiction in workplace
January 16, 2018 - Starting menstruation early increases risk of cardiovascular disease and stroke in later life
January 16, 2018 - CapsoVision receives CE Mark approval for use of CapsoCam Plus System in pediatric patients
January 16, 2018 - Researchers develop new dynamic statistical model to follow gene expressions over time
January 16, 2018 - Alzheimer’s ‘looks like me, it looks like you’
January 16, 2018 - By the Numbers: Physicians’ Economic Impact
January 16, 2018 - Sound Health | NIH News in Health
January 16, 2018 - Modifying baby formula doesn’t prevent type 1 diabetes in children
January 16, 2018 - Energy drinks dangerous for kids
January 16, 2018 - When you need a breast screening, should you get a 3-D mammogram?
January 16, 2018 - Johns Hopkins gets approval to perform HIV positive to HIV positive living donor kidney transplants
January 16, 2018 - The Salk Institute and Indivumed collaborate for cutting-edge cancer research
January 16, 2018 - Study reveals negative long-term effects of heavy cannabis use on brain function and behavior
January 16, 2018 - Many gym-goers injure themselves by pushing harder to be better than friends
January 16, 2018 - Risankizumab Meets All Primary Endpoints Reporting Positive Results in Fourth Pivotal Phase 3 Psoriasis Study
January 16, 2018 - Federal Junk Food Tax Feasible, Study Says
January 16, 2018 - Do girls have stronger teeth than boys?
January 16, 2018 - New high-sensitivity blood tests could aid faster diagnosis and treatment for heart attack
January 16, 2018 - How fatal mitochondrial diseases may strike offspring of families with no history of the conditions
January 16, 2018 - TherapeuticsMD Announces FDA Acceptance of New Drug Application and Prescription Drug User Fee Act (PDUFA) Date for TX-004HR
January 16, 2018 - Morning Break: Food Pharmacies; Obamacare Sign-ups Dip; Top Pot Studies
January 16, 2018 - Blood pressure declines 14 to 18 years before death
January 16, 2018 - ViLim Ball technology helps reduce uncontrollable shaking hands
January 16, 2018 - Researchers use immune-mimicking biomaterial scaffolds to fast track T cell therapies
New technique could reveal immunotherapy targets, study finds

New technique could reveal immunotherapy targets, study finds

image_pdfDownload PDFimage_print
Scanning electron micrograph of a human T lymphocyte (also called a T cell) from the immune system of a healthy donor. Credit: NIAID

Researchers at the Stanford University School of Medicine and their colleagues have developed a way to pinpoint potential targets for cancer therapies that rely on the body’s immune system.

Those targets are molecules called antigens, which appear on the surface of tumor cells and other malignant or damaged cells. Antigens are cumbersome to identify but critical to developing cancer immunotherapies, a type of treatment in which the host’s own immune system is trained to seek out and fight harmful or mutated cells. And while cancer vaccines are still largely a thing of the future, new antigens are key to nudging progress forward.

The researchers exploited years of structural and protein engineering studies by the laboratory of Christopher Garcia, PhD, professor of molecular and cellular physiology and of structural biology, to better understand how the immune system “sees” antigens. Based on this knowledge, they developed a technique to identify them. What’s more, the technique could serve to identify potential antigens relevant to other immunotherapies, such as those that combat autoimmune or infectious diseases.

A paper describing the work will be published online Dec. 21 in Cell. Stanford graduate student Marvin Gee and postdoctoral scholar Arnold Han, MD, PhD, share lead authorship of the paper. Garcia, who holds the Younger Family Professorship, is the senior author.

“The whole foundation of immunotherapy depends on immune cells recognizing specific antigens on tumor cells. That’s the basis of the actual killing event—where the rubber hits the road,” Garcia said. “But currently we know very few tumor antigens, and there’s just been no good way of discovering them.” Here, he said, is where he sees potential for the new biochemical screen to expedite the identification process.

A game of odds

A type of immune cell known as a T cell patrols the body for foreign invaders or mutated cells poised to cause harm. On their surface, T cells have receptors that bind to one or more specific antigens of a tumor or other harmful cell. When a receptor finds its match, the antigen acts as the T cell’s molecular directive to infiltrate and kill the unhealthy cell. But because matched receptor-antigen pairs are difficult to come by experimentally, many receptors remain unidentified. They’re called orphan receptors.

“This screen is a completely unbiased way of taking a random T cell receptor that’s infiltrated a tumor and interrogating it to find out exactly what antigen it is actually seeing,” said Garcia, who is a Howard Hughes Medical Institute investigator.

The screen he and his colleagues devised pulls data from two resources: orphan T cell receptors found on colon cancer tumors, and a hefty repository of antigen sequences of white blood cells. Using yeast as a vehicle, the team scanned some 400 million of these antigen sequences, all possible matches to 20 orphan receptors derived from the colon cancer tissue samples. Four of the 20 receptors found matches.

The somewhat modest ratio is a product of chance. The receptors are restricted by genotype, and will only bind to antigens of a matching genotype. Between that and the enormous variability of possible antigens, pegging a receptor-antigen match is “a bit like winning the lottery,” Garcia said. “The key to increasing the odds is to increase the throughput of the experiments, kind of like putting more coins into the slot machine.”

What’s in the screen, and what’s getting screened, Garcia explained, are mimics of the original receptors and antigens—accurate, but not 100 percent identical. So, after the initial screen, the four receptors that bound antigens were then sequenced and run through an algorithm, which ultimately figured out the correct corresponding identity of the human antigen. With this technique, the team unambiguously identified two human antigens of the four receptors that found matches in the yeast-based library, and they’re currently in the process of identifying a third one.

Neo versus self

There’s an ongoing debate, Garcia said, about the most important types of antigens that T cells “see” and attack in tumors. One currently popular notion is that T cell receptors react with neoantigens, or antigens that are mutated or uniquely part of a cancer, rather than self-antigens, which both cancerous and healthy cells can have in common. Unexpectedly, however, evidence from the new study suggests otherwise, as one of the two antigens was “self.” In addition, the self-antigen turned out to be shared between two patients—a key to developing immunotherapies.

“It was a huge surprise to find that one of the antigens was a non-mutated, shared self-antigen, and the implications are that if you screen many more T cell receptors, you’ll likely find a lot of shared antigens,” Garcia said. “So in theory, you could have one immunotherapy that targets this antigen, and it’d be effective for multiple patients.” But this, he said, brings us to the million-dollar question: How do we generate anti-tumor immunity against an antigen that is attached to both healthy and cancerous cells?

“Right now, we don’t have an answer, but there are a lot of efforts going into that problem, and it’s something that I’m very interested in,” Garcia said. “It’s a problem that we’re going to have to solve because there are going to be a lot of tumor antigens that will be non-mutated, and so we have to figure out how to localize the attack to just the tumor, and not the rest of the host.”


Explore further:
New strategy for multiple myeloma immunotherapy

Journal reference:
Cell

Provided by:
Stanford University Medical Center

Tagged with:

About author

Related Articles