Breaking News
December 16, 2018 - ‘Easy Way Out’? Stigma May Keep Many From Weight Loss Surgery
December 16, 2018 - Gout drug may protect against chronic kidney disease
December 16, 2018 - Talking about memories enhances the wellbeing of older and younger people
December 16, 2018 - Occupational exposure to pesticides increases risk for cardiovascular disease among Latinos
December 16, 2018 - A biomarker in the brain’s circulation system may be Alzheimer’s earliest warning
December 16, 2018 - Magnesium may play important role in optimizing vitamin D levels, study shows
December 16, 2018 - The effect of probiotics on intestinal flora of premature babies
December 16, 2018 - Parents spend more time talking with kids about mechanics of using mobile devices
December 16, 2018 - Biohaven Announces Positive Results from Ongoing Rimegepant Long-Term Safety Study
December 16, 2018 - Arterial stiffness may predict dementia risk
December 16, 2018 - Study explores link between work stress and increased cancer risk
December 16, 2018 - Sex work criminalization linked to incidences of violence finds study
December 16, 2018 - Johns Hopkins researchers discover swarming behavior in fish-dwelling parasite
December 16, 2018 - Schistosomiasis prevention and treatment could help control HIV
December 16, 2018 - Early postpartum opioids linked with persistent usage
December 16, 2018 - Johns Hopkins researchers identify molecular causes of necrotizing enterocolitis in preemies
December 16, 2018 - Advanced illumination expands capabilities of light-sheet microscopy
December 16, 2018 - Alzheimer’s could possibly be spread via contaminated neurosurgery
December 16, 2018 - Unraveling the complexity of cancer biology can prompt new avenues for drug development
December 16, 2018 - Inflammatory Bowel Disease, Prostate Cancer Linked
December 16, 2018 - Cannabis youth prevention strategy should target mental wellbeing
December 15, 2018 - Recent developments and challenges in hMAT inhibitors
December 15, 2018 - Sewage bacteria found lurking in Hudson River sediments
December 15, 2018 - CDC selects UMass Amherst biostatistician model that helps predict influenza outbreaks
December 15, 2018 - Researchers reveal brain mechanism that drives itch-evoked scratching behavior
December 15, 2018 - New computer model helps predict course of the disease in prostate cancer patients
December 15, 2018 - Obesity to Blame for Almost 1 in 25 Cancers Worldwide
December 15, 2018 - How the brain tells you to scratch that itch
December 15, 2018 - New findings could help develop new immunotherapies against cancer
December 15, 2018 - World’s largest AI-powered medical research network launched by OWKIN
December 15, 2018 - Young people suffering chronic pain battle isolation and stigma as they struggle to forge their identities
December 15, 2018 - Lifespan extension at low temperatures depends on individual’s genes, study shows
December 15, 2018 - New ingestible capsule can be controlled using Bluetooth wireless technology
December 15, 2018 - Researchers uncover microRNAs involved in the control of social behavior
December 15, 2018 - Research offers hope for patients with serious bone marrow cancer
December 15, 2018 - Link between poverty and obesity is only about 30 years old, study shows
December 15, 2018 - Mass spectrometry throws light on old case of intentional heavy metal poisoning
December 15, 2018 - BeyondSpring Announces Phase 3 Study 105 of its Lead Asset Plinabulin for Chemotherapy-Induced Neutropenia Meets Primary Endpoint at Interim Analysis
December 15, 2018 - Study finds that in treating obesity, one size does not fit all
December 15, 2018 - Tenacity and flexibility help maintain psychological well-being, mobility in older people
December 15, 2018 - Study reveals role of brain mechanism in memory recall
December 15, 2018 - High levels of oxygen encourage the brain to remain in deep, restorative sleep
December 15, 2018 - Experimental HIV vaccine strategy works in non-human primates, research shows
December 15, 2018 - Genetically modified pigs could limit replication of classical swine fever virus, study shows
December 15, 2018 - FDA Approves Herzuma (trastuzumab-pkrb), a Biosimilar to Herceptin
December 15, 2018 - Cost and weight-loss potential matter most to bariatric surgery patients
December 15, 2018 - Cancer Research UK and AstraZeneca open new Functional Genomics Centre
December 15, 2018 - New research lays out potential path for treatment of Huntington’s disease
December 15, 2018 - Prestigious R&D 100 Award presented to Leica Microsystems
December 15, 2018 - Study shows septin proteins detect and kill gut pathogen, Shigella
December 15, 2018 - Study sheds new light on disease-spreading mosquitoes
December 15, 2018 - 2017 Saw Slowing in National Health Care Spending
December 15, 2018 - Monitoring movement reflects efficacy of mandibular splint
December 15, 2018 - Study supports BMI as useful tool for assessing obesity and health
December 15, 2018 - Self-guided, internet-based therapy platforms effectively reduce depression
December 15, 2018 - Organically farmed food has bigger climate impact than conventional food production
December 15, 2018 - Faster, cheaper test has potential to enhance prostate cancer evaluation
December 15, 2018 - Researchers study abnormal blood glucose levels of patients after hospital discharge
December 15, 2018 - Swedish scientists explore direct association of dementia and ischemic stroke deaths
December 15, 2018 - Study finds 117% increase in number of dementia sufferers in 26 years
December 15, 2018 - Eczema Can Drive People to Thoughts of Suicide: Study
December 15, 2018 - Link between neonatal vitamin D deficiency and schizophrenia confirmed
December 15, 2018 - Nurse denied life insurance because she carries naloxone
December 15, 2018 - Ritalin drug affects organization of pathways that build brain networks used in attention, learning
December 15, 2018 - Research pinpoints two proteins involved in creation of stem cells
December 15, 2018 - Gut bacteria may modify effectiveness of anti-diabetes drugs
December 15, 2018 - A new type of ‘painless’ adhesive for biomedical applications
December 15, 2018 - Early physical therapy associated with reduction in opioid use
December 15, 2018 - Breast cancer protection from pregnancy begins many decades later, study finds
December 15, 2018 - How often pregnant women follow food avoidance strategy to prevent allergy in offspring?
December 15, 2018 - Using machine learning to predict risk of developing life-threatening infections
December 15, 2018 - How imaginary friends could boost children’s development
December 15, 2018 - Folate deficiency creates more damaging chromosomal abnormalities than previously known
December 15, 2018 - Study provides new insights into molecular mechanisms underlying role of amyloid in Alzheimer’s disease
December 15, 2018 - For the asking, a check is in the mail to help pay for costly drugs
December 15, 2018 - UA scientists uncover biological processes leading to rare brain disorder in babies
December 15, 2018 - The largest database on industrial poisons
December 15, 2018 - ESMO Immuno-Oncology Congress showcases novel technologies set to benefit many cancer patients
December 15, 2018 - Ovid Therapeutics Announces Plans to Move into a Phase 3 Trial in Pediatric Patients Based on End-of-Phase 2 Meeting for OV101 in Angelman Syndrome
December 15, 2018 - Left ventricular noncompaction – Genetics Home Reference
Caltech researchers develop new method to see neural connections in living flies

Caltech researchers develop new method to see neural connections in living flies

image_pdfDownload PDFimage_print

The human brain is composed of billions of neurons wired together in intricate webs and communicating through electrical pulses and chemical signals. Although neuroscientists have made progress in understanding the brain’s many functions–such as regulating sleep, storing memories, and making decisions–visualizing the entire “wiring diagram” of neural connections throughout a brain is not possible using currently available methods. But now, using Drosophila fruit flies, Caltech researchers have developed a method to easily see neural connections and the flow of communications in real time within living flies. The work is a step forward toward creating a map of the entire fly brain’s many connections, which could help scientists understand the neural circuits within human brains as well.

A paper describing the work appears online in the December 12 issue of eLife. The research was done in the laboratory of Caltech research professor Carlos Lois.

“If an electrical engineer wants to understand how a computer works, the first thing that he or she would want to figure out is how the different components are wired to each other,” says Lois. “Similarly, we must know how neurons are wired together in order to understand how brains work.”

When two neurons connect, they link together with a structure called a synapse, a space through which one neuron can send and receive electrical and chemical signals to or from another neuron. Even if multiple neurons are very close together, they need synapses to truly communicate.

The Lois laboratory has developed a method for tracing the flow of information across synapses, called TRACT (Transneuronal Control of Transcription). Using genetically engineered Drosophila fruit flies, TRACT allows researchers to observe which neurons are “talking” and which neurons are “listening” by prompting the connected neurons to produce glowing proteins.

With TRACT, when a neuron “talks”–or transmits a chemical or electrical signal across a synapse–it will also produce and send along a fluorescent protein that lights up both the talking neuron and its synapses with a particular color. Any neurons “listening” to the signal receive this protein, which binds to a so-called receptor molecule–genetically built-in by the researchers–on the receiving neuron’s surface. The binding of the signal protein activates the receptor and triggers the neuron it’s attached to in order to produce its own, differently colored fluorescent protein. In this way, communication between neurons becomes visible. Using a type of microscope that can peer through a thin window installed on the fly’s head, the researchers can observe the colorful glow of neural connections in real time as the fly grows, moves, and experiences changes in its environment.

Many neurological and psychiatric conditions, such as autism and schizophrenia, are thought to be caused by altered connections between neurons. Using TRACT, scientists can monitor the neuronal connections in the brains of hundreds of flies each day, allowing them to make comparisons at different stages of development, between the sexes, and in flies that have genetic mutations. Thus, TRACT could be used to determine how different diseases perturb the connections within brain circuits. Additionally, because neural synapses change over time, TRACT allows the monitoring of synapse formation and destruction from day to day. Being able to see how and when neurons form or break synapses will be critical to understanding how the circuits in the brain assemble as the animal grows, and how they fall apart with age or disease.

TRACT can be localized to focus in on the wiring of any particular neural circuit of interest, such as those that control movement, hunger, or vision. Lois and his group tested their method by examining neurons within the well-understood olfactory circuit, the neurons responsible for the sense of smell. Their results confirmed existing data regarding this particular circuit’s wiring diagram. In addition, they examined the circadian circuit, which is responsible for the waking and sleeping cycle, where they detected new possible synaptic connections.

TRACT, however, can do more than produce wiring diagrams. The transgenic flies can be genetically engineered so that the technique prompts receiving neurons to produce proteins that have a function, rather than colorful proteins that simply trace connections.

“We could use functional proteins to ask, ‘What happens in the fly if I silence all the neurons that receive input from this one neuron?'” says Lois. “Or, conversely, ‘What happens if I make the neurons that are connected to this neuron hyperactive?’ Our technique not only allows us to create a wiring diagram of the brain, but also to genetically modify the function of neurons in a brain circuit.”

Previous methods for examining neural connections were time consuming and labor intensive, involving thousands of thin slices of a brain reconstructed into a three-dimensional structure. A laboratory using these techniques could only yield a diagram for a single, small piece of fruit-fly brain per year. Additionally, these approaches could not be performed on living animals, making it impossible to see how neurons communicated in real time.

Because the TRACT method is completely genetically encoded, it is ideal for use in laboratory animals such as Drosophila and zebrafish; ultimately, Lois hopes to implement the technique in mice to enable the neural tracing of a mammalian brain. “TRACT is a new tool that will allow us to create wiring diagrams of brains and determine the function of connected neurons,” he says. “This information will provide important clues towards understanding the complex workings of the human brain and its diseases.”

Source:

http://www.caltech.edu/news/new-technology-will-create-brain-wiring-diagrams-80863

Tagged with:

About author

Related Articles