Breaking News
September 19, 2018 - Bristol-Myers Squibb’s Novel, Oral, Selective TYK2 Inhibitor Delivered Significant Skin Clearance in Patients with Moderate to Severe Plaque Psoriasis in Phase 2 Trial
September 19, 2018 - Can work stress contribute to Parkinson’s disease risk?
September 19, 2018 - Global Climate Action Summit: A focus on kids and climate
September 19, 2018 - Targeted Lung Denervation procedure significantly reduces COPD problems
September 19, 2018 - FDA-approved ‘safe’ daily BPA exposure may contribute to insulin resistance
September 19, 2018 - Research finds physical connection between the brain’s fluid reservoirs and meningeal lymphatics
September 19, 2018 - UCalgary study could help physicians make better treatment decisions for stroke
September 19, 2018 - Biomedical review finds failure rates in some surgical mesh treatments to be unacceptably high
September 19, 2018 - Researchers develop more accurate measure of body fat
September 19, 2018 - Doctors and students rally to support gun violence research, education
September 19, 2018 - LEO Pharma and MorphoSys announce expansion of strategic alliance to develop peptide-derived drugs
September 19, 2018 - Seniors in pain hop aboard the canna-bus
September 19, 2018 - New compound could prevent malaria parasites from maturing inside mosquito
September 19, 2018 - Scientists find alterations in blood flow in response to body position change
September 19, 2018 - UNC Health Care extends free access to virtual care service in the aftermath of Hurricane Florence
September 19, 2018 - Opioid Refills Rare After Rhinoplasty
September 19, 2018 - Corn, obesity, and navigating healthy eating choices as a parent
September 19, 2018 - Journal editor aims to prompt thoughtful review of ethics in precision health
September 19, 2018 - Researchers identify key step in how plant cells respond to pathogens
September 18, 2018 - Researchers analyze how exposure to silver nanoparticles affects zebrafish
September 18, 2018 - Study shows air pollution may be bad for the fetus
September 18, 2018 - Coffee May Have Another Perk for Kidney Patients
September 18, 2018 - Tongue-in-cheek Nobels honor nutritional analysis of cannibalism, roller-coaster kidney stones treatment
September 18, 2018 - Progress, priorities, challenges are focus of State of Stanford Medicine | News Center
September 18, 2018 - Established Alzheimer’s Risk Gene Has a New Role
September 18, 2018 - Hospitalization after antibiotic initiation found to be higher for people with Alzheimer’s disease
September 18, 2018 - Many children with special healthcare needs do not have access to ‘PCMH-concordant’ care
September 18, 2018 - Investigational nasal influenza vaccine tested in children and teens
September 18, 2018 - Lymphatic vessels surrounding the brain play crucial role in multiple sclerosis, research suggests
September 18, 2018 - New fiber laser-based ultrasound sensor may have potential applications in medical diagnostics
September 18, 2018 - Protect your heart and health during ‘dog days’ of summer
September 18, 2018 - Faculty receive awards for promise in biomedical research, clinical care | News Center
September 18, 2018 - Digital games for CVD-related self-management improve exercise capacity and energy expenditure
September 18, 2018 - Aluminum inclusions help enhance adsorption of chemo drugs onto active carbon delivery capsule
September 18, 2018 - Adding PET scans to CT imaging can change treatment for women with cervical cancer
September 18, 2018 - UCSF awarded $20 million grant to study impacts of new, emerging tobacco products
September 18, 2018 - Human brains may be wired to prefer lying on the couch, suggests research
September 18, 2018 - Zika virus vaccine shows promise for treatment of fatal glioblastoma
September 18, 2018 - Theravance Biopharma and Mylan to Report New Data from Phase 3 Studies of Yupelri (revefenacin) in Oral Presentation at European Respiratory Society International Congress 2018
September 18, 2018 - INSiGHT identifies unique retinal regulatory genes
September 18, 2018 - Diversity, science leadership grants awarded to student-faculty pairs | News Center
September 18, 2018 - Many parents blame electronics for sleep problems among teens
September 18, 2018 - Researchers study neuronal activity in brain that prevents individuals from doing physical activity
September 18, 2018 - Purifying Proteins from Mammalian Cell Culture
September 18, 2018 - Researchers map 3D structure of toxic proteins used by Pseudomonas aeruginosa to trigger infection
September 18, 2018 - Outcome of ACL reconstruction related to the way you move post-surgery
September 18, 2018 - Study aims to investigate risk factors for PPCs in surgical patients with gastric cancer
September 18, 2018 - Ardelyx Submits New Drug Application for Tenapanor for IBS-C
September 18, 2018 - Sociodemographic disparities in eyeglass use among elderly
September 18, 2018 - New Drug Shows Promise for Progressive Form of MS
September 18, 2018 - Babies exposed to higher levels of organochlorine compounds in womb may have worse lung function
September 18, 2018 - Women exposed to trauma in their lives gave birth to underweight male infants
September 18, 2018 - Probiotic supplementation may reduce use of antibiotics, scientific analysis shows
September 18, 2018 - Resveratrol decreases pain severity and levels of inflammatory biomarkers in osteoarthritis patients
September 18, 2018 - Research shows pollution is reaching the placenta
September 18, 2018 - KAIST researchers develop heart-targeting drug delivery technology using tannin acid
September 18, 2018 - Muscle relaxants used during general anesthesia can increase risk of pulmonary complications
September 18, 2018 - Silicone breast implants may increase risk of rare adverse outcomes in women
September 18, 2018 - Pediatricians Have a Role in Encouraging Play Among Children
September 18, 2018 - California’s Medicaid program hits ‘print’ when the feds need info
September 18, 2018 - Genes, environment and schizophrenia—new study finds the placenta is the missing link
September 18, 2018 - Boehringer Ingelheim announces study results of COPD patients treated with Spiolto Respimat
September 18, 2018 - PAREXEL launches Patient Innovation Center to improve drug development process
September 18, 2018 - Children’s National and NIAID launch pediatric clinical research partnership
September 18, 2018 - Researchers may be overlooking complexities in social relations of primates
September 18, 2018 - Key signaling molecule that helps stem cells make healthy bone declines as we age
September 18, 2018 - More women veterans with chronic pain use CIH therapies than men
September 18, 2018 - As Earth Warms, Heat-Related Deaths Will Multiply
September 18, 2018 - Labetalol use up for patients with preeclampsia and asthma
September 18, 2018 - MoreGrasp project shows significant results in field of thought-controlled grasp neuroprosthetics
September 18, 2018 - Drumming can benefit school children with autism
September 18, 2018 - Busyness can help people to make virtuous choices, research shows
September 18, 2018 - Two-minute bursts of in-class exercise breaks do not disrupt learning and teaching
September 18, 2018 - New online tools aid surgeons and specialists who care for older people
September 18, 2018 - Researchers use CRISPR to identify gene that helps cells resist flavivirus infection
September 18, 2018 - Brain’s support cells may play a central role in repetitive behaviors related to OCD
September 18, 2018 - Scientists discover novel mechanism by which synthesized proteins reach target compartment in cell
September 18, 2018 - Easy and rapid test for viral infections can cut antibiotic use, hospitalizations
September 18, 2018 - Gunshot victims more likely to require blood transfusions and die than other trauma patients
September 18, 2018 - Cyclacel Pharmaceuticals Announces Initiation of Phase 1b/2 Clinical Trial of Sapacitabine With Olaparib in BRCA Mutant Breast Cancer
Multidisciplinary Human-Focused Research

Multidisciplinary Human-Focused Research

image_pdfDownload PDFimage_print

An interview with Prof. Arti Ahluwalia, conducted by Will Souter, MSc

Please can you introduce yourself and the work you do at Centro E. Piaggio?

My name is Arti Ahluwalia and I am a professor of biomedical engineering. I’m also the director of Centro E. Piaggio, a multi-disciplinary research center focused on activities in robotics and biomedical engineering. What we’re trying to do is to use the human body as an inspiration for making better robots, better machines, and also for improving the quality of life and the environment.

The work that we’re doing in particular involves the development of better models of the human body. To do that, we need to put together cells, tissues, culture them in an artificial environment so that they feel as if they’re inside the human body. We do that in order to be able to study tissues close up without having to resort to animals.

The combination of robotics and biomedical engineering in a multi-disciplinary center is quite unique – how did that come to be, and what is it like working in that environment?

I think the interdisciplinary nature of the centre is one of the things that interests me most about working here. What we do here is we put together engineering technologies, mathematical tools, computational tools, biology, chemistry, physics, and we come out with innovative ideas, products, new techniques, new protocols for advancing human knowledge.

So, for example, I have a degree in physics, and I think that physics gives you the fundamental basis for thinking in a certain way, in which you try and understand phenomena by explaining them analytically. I also have a deep interest in the environment, as well as in human beings; I love animals as well, so for me this is like the perfect combination for my work. I can use my way of thinking as a physicist and then apply it to studying biology, biological systems, and the human body.

Centro E. Piaggio was established in 1960. It wasn’t an interdisciplinary research center at the time. It was a center of bioengineering and robotics, and those are still its two pillars, but in time it’s become more human-centered, which is due to the fact that we absorbed these disciplines by bringing in people and staff from different departments. It’s actually one of the oldest interdisciplinary centers in the world.

The Data Brain Project at Centro E. Piaggio – Logos Biosystems from AZoNetwork on Vimeo.

Although it wasn’t by design initially, we do now have this strategy of gearing the center’s research to human, environmental-centered science across a range of disciplines. I think this came about because many people began realizing, about twenty years ago, that the best design is often found in biology, designed by evolution. In order to optimize the design of machines, the motion of robots, you need to study how biological systems move, and then apply those rules and those control algorithms to the machines.

I also think that one of the important characteristics of this center is not just the multidisciplinarity, but the fact that we have a very good gender balance, at least amongst the young researchers. We have a large number of females who are excellent researchers, and we also have male researchers, and the way that they interact leads to, again, new ideas, new thoughts, and new ways of developing our fields of work.

When you come into the center, you get this feeling that this is a little bit different from other labs, because there’s like an almost effervescent feeling, of things happening, things going on, and it’s not just because of the interdisciplinarity, but I think because of the fact that we have people from all genders and from all scientific disciplines – we have engineers, biologists, chemists, physicists, and that mix really leads to an excellent blend of innovative science.

Pisa, and the rest of Tuscany, could be called the birthplace of modern science, due to its significance during the Renaissance – as a scientist working in Pisa today, do you feel inspired by that legacy?

Yes, it is really great to work here. I think Pisa, like the rest of Italy, is really the birthplace of European culture and of a rational, scientific approach, a scientific way of thinking, and that is a great inspiration for all of us. Rather than being inspired ideologies or beliefs, we’re really inspired by evidence and rationality. So yes, it is very inspirational to work here. I can see the tower from my window!

Please can you introduce the DataBrain project – what are the aims of this initiative, and what technologies are you using to achieve them?

The DataBrain project is a project financed by the University of Pisa, and the aim of the project is to use deep imaging techniques like confocal and two-photon microscopy, to image clarified brains, and thereby extract the structural, morphometric information of neuron architecture in its native 3D environment, and then use that information, use specific mathematical algorithms to store that information, and then use it to 3D print the neurons in order to better understand how their architecture modulates their function. In that way, zooming into the brain architecture, we can see how, for example, diseases or disorders such as autism or Parkinson’s can alter the structure, and therefore the functional connections.

The data has been placed on an open platform so that anybody can use the stored architectures to print neurons themselves, and they can also use the algorithms that we have developed to extract the same type of information from the tissue that the researchers might be interested in.

How do the mathematical and programmatic models capture a digital map of the internal structure of the brain?

To digitalize a map of the brain, we need to acquire the brain at cellular resolution and deep in the tissue. But the brain is full of lipids, so we need the X-CLARITY to clarify the brain. We’ve demonstrated that the clarification can be regarded as a trade-off between tissue transparency, and protein loss within the tissue – so following this simple rule, you can have the best contrasted images, which allow my algorithms to work.

After the clarification process, I acquire the samples using a confocal microscope. Then, I use my smart region-growing algorithm to reconstruct a single neuron from the forest of the brain. My algorithm works on the pixel intensity of the brain images, and automatically reconstructs, not just traces, single neurons. So, we can have Fourier information about the neuron volume, for example dendrite thickness.

My work can help the scientific community to unravel the mystery of the brain, because the structure of the brain is strongly connected with the function of the brain, so giving the scientific community a high-fidelity map of the brain can help them understand how it works.

Mapping Neurons in the Brain from AZoNetwork on Vimeo.

Answer from Chiara Magliaro, post-doc at the Centro E. Piaggio, University of Pisa. Her research is focused on integrated advanced imaging techniques with novel image processing algorithms, to digitalize a high-fidelity map of the mammalian brain, for example the mouse brain, and to digitalize both the cellome and the connectome, and understand how the brain works and how it gets sick.

During her PhD thesis, Chiara has developed a workflow to integrate imaging processing techniques and advanced imaging techniques, to study the sexual dimorphism in murine model of autism, to understand why there is an imbalance in incidence between males and females.

What is the importance of tissue clearing techniques for DataBrain and your other projects? Are there insights that would be impossible or much more difficult to achieve without it?

The tissue clearing methodology and the electrophoretic tissue clearing machine that we’re using, the X-CLARITY from Logos Biosystems, has actually been fundamental to the DataBrain project, because without being able to clear tissues of the lipids, we wouldn’t be able to image deep into brains, and so we wouldn’t be able to extract that structural information that is so important to understand the function of mammalian brains.

I think it’s given us a huge advantage, and it’s a great leap forward in imaging, not just of brain tissue, but also of other types of tissue because we can now clarify different organs. Mini-organs as well can now be clarified and therefore visualized in-depth without having to resort to techniques that break down the tissue, which would mean we might lose the structure while we’re trying to investigate it.

What do you hope will be the impact of your work in the longer term?

Well, in the longer term we have a lot of inspirational ideas. I suppose one of the driving forces for the work that I do, personal driving forces, is being able to reduce the number of animals used in scientific experiments, but also to be able to get a better idea of how the human body functions. We obviously can’t do that by using animals; we have to do it by using humans, and if we can build these mini physiological-like systems in vitro, we actually have a super way of approaching themes such as personalized medicine, toxicology, disease models, etc.

I think it’s important for scientists to be aware of the ethical implications of their work, and to be also aware of the impact of their work on society and on the environment. Our work isn’t directly focused on reducing animal testing, and I don’t think that science should be driven by any sort of ideology, such as beliefs that it’s incorrect to use animals in experimental work, or beliefs that humans are superior to animals. So whilst we are working to gain a better understanding of how the human body functions, and the ethical implications of the work are important, I think they should be driven by a rational and illuminated way of approaching science, as well as life in general.

About Professor Arti Ahluwalia

Arti Ahluwalia was born in Kenya and educated in the UK. She has a B.Sc. in Physics from University of Bath, M.Sc. in Instrumentation and Analytical Science from the University of Manchester (formerly UMIST), UK and a Ph.D. in Bioengineering from the Polytechnic of Milan, Italy.

Her research interests are in in-vitro models of integrative pathophysiology and associated innovative materials and advanced cell culture systems. She is also involved in capacity building in the field of Biomedical Engineering, in association with UNECA, FABLAB Pisa and ABEC (the African Biomedical Engineering Consortium).

Tagged with:

About author

Related Articles