Breaking News
January 21, 2019 - High Levels of Activity, Motor Ability Linked to Better Cognition
January 21, 2019 - Killer blows? Knockout study of pair of mouse MicroRNA provides cancer insight
January 21, 2019 - Buffalo researchers receive grant to quicken development of generic equivalents of contraceptives
January 21, 2019 - One-third of pregnant women do not believe cannabis is harmful to their fetus
January 21, 2019 - Fiderstat could be used as chemopreventative drug for intestinal cancers caused by APC gene mutations
January 21, 2019 - Modifying healthcare delivery practices may improve discussions between youth and healthcare providers
January 21, 2019 - UNIST researcher named as recipient of Merck’s 2018 Life Science Awards
January 21, 2019 - How Getting a Flu Shot Could Save Your Life
January 21, 2019 - Surgical adhesions can be treated, prevented in mice
January 21, 2019 - Increased physician-targeted marketing associated with higher opioid overdose deaths
January 21, 2019 - Researchers uncover specific microbial signatures of intestinal disease
January 21, 2019 - Study to investigate new targeted oral treatments for severe asthma
January 21, 2019 - Plan Your Plate | NIH News in Health
January 21, 2019 - Fecal occult blood test may improve CRC outcomes in some
January 21, 2019 - Blood test detects Alzheimer’s disease years before symptoms develop
January 21, 2019 - Mount Sinai joins with Paradigm and ReqMed to repurpose drug for treatment of MPS
January 21, 2019 - FDA Advisory Committee Votes on Zynquista (sotagliflozin) as Treatment for Adults with Type 1 Diabetes
January 21, 2019 - The causes and complications of snoring
January 21, 2019 - Placenta adapts and compensates when pregnant mothers have poor diets or low oxygen
January 21, 2019 - New implant could restore the transmission of electrical signals in injured central nervous system
January 21, 2019 - Rapid-acting fentanyl test strips found to be effective at reducing overdose risk
January 21, 2019 - Coronary Artery Calcium May Help Predict CVD in South Asians
January 21, 2019 - The mystery of the super-ager
January 21, 2019 - Scientists develop smart microrobots that can change shape depending on their surroundings
January 21, 2019 - Keep Moving to Keep Brain Sharp in Old Age
January 21, 2019 - Despite progress, gay fathers and their children still structurally stigmatized
January 21, 2019 - New drug for treating liver parasites in vivax malaria
January 21, 2019 - Merck recognized with 2018 Life Science Industry Award for best use of social media
January 21, 2019 - Coeur Wallis equips the canton of Valais with 260 SCHILLER defibrillators
January 21, 2019 - Scientists propose quick and pain-free method for diagnosing kidney cancer
January 21, 2019 - Signs of memory loss could point to hearing issues
January 21, 2019 - HeartFlow Analysis shows highest diagnostic performance for detecting coronary artery disease
January 21, 2019 - How Much Caffeine is Too Much?
January 21, 2019 - Take a timeout before you force your child to apologize
January 21, 2019 - Scientists design two AI algorithms to improve early detection of cognitive impairment
January 21, 2019 - Novel therapy for children with chronic hormone deficiency provides lifeline for parents
January 21, 2019 - Bioethicists call for oversight of poorly regulated, consumer-grade neurotechnology products
January 21, 2019 - Study shows hereditary hemochromatosis behind many cancers and joint diseases
January 21, 2019 - Short bouts of stairclimbing throughout the day can improve cardiovascular health
January 20, 2019 - Liver Transplant Survival May Improve With Race Matching
January 20, 2019 - Study implicates hyperactive immune system in aging brain disorders
January 20, 2019 - Cancer Diagnosis May Quadruple Suicide Risk
January 20, 2019 - Parkinson’s disease experts devise a roadmap
January 20, 2019 - Research brings new hope to treating degenerative brain diseases
January 20, 2019 - Scientists pinpoint a set of molecules that wire the body weight center of the brain
January 20, 2019 - Researchers get close to developing elusive blood test for Alzheimer’s disease
January 20, 2019 - UCLA researchers demonstrate new technique to develop cancer-fighting T cells
January 20, 2019 - Researchers discover how cancer cells avoid genetic meltdown
January 20, 2019 - Exercise makes even the ‘still overweight’ healthier: study
January 20, 2019 - University of Utah to establish first-of-its-kind dark sky studies minor in the US
January 20, 2019 - School-based nutritional programs reduce student obesity
January 20, 2019 - Improved maternity care practices in the southern U.S. reduce racial inequities in breastfeeding
January 20, 2019 - New enzyme biomarker test indicates diseases and bacterial contamination
January 20, 2019 - Republican and Democratic governors have different visions to transform health care, say researchers
January 20, 2019 - Researchers discover that spin flips happen in only half a picosecond in the course of a chemical reaction
January 20, 2019 - Suicide Risk Up More Than Fourfold for Cancer Patients
January 20, 2019 - Doctors find 122 nails in Ethiopian’s stomach
January 20, 2019 - UV disinfection technology eliminates up to 97.7% of pathogens in operating rooms
January 20, 2019 - Researchers discover mechanism which drives leukemia cell growth
January 20, 2019 - AHA: Infection as a Baby Led to Heart Valve Surgery for Teen
January 20, 2019 - Injection improves vision in a form of childhood blindness
January 20, 2019 - Multiple sclerosis therapies delay progression of disability
January 20, 2019 - New study finds infrequent helmet use among bike share riders
January 20, 2019 - Clearing up information about corneal dystrophies
January 20, 2019 - Researchers describe new behavior in energy metabolism that refutes existing evidence
January 20, 2019 - New study takes first step toward treating endometriosis
January 20, 2019 - Researchers find how GREB1 gene promotes resistance to prostate cancer treatments
January 20, 2019 - Replacing Sitting Time With Activity Lowers Mortality Risk
January 20, 2019 - A simple, inexpensive intervention makes birth safer for moms and babies in parts of Africa
January 19, 2019 - New anti-inflammatory compound acts as ‘surge protector’ to reduce cancer growth
January 19, 2019 - Significant flaws found in recently released forensic software
January 19, 2019 - New Leash on Life? Staying Slim Keeps Pooches Happy, Healthy
January 19, 2019 - Men and women remember pain differently
January 19, 2019 - Rising air pollution linked with increased ER visits for breathing problems
January 19, 2019 - Study uses local data to model food consumption patterns among Seattle residents
January 19, 2019 - The brain’s cerebellum plays role in controlling reward and social behaviors, study shows
January 19, 2019 - Relationship between nurse work environment and patient safety
January 19, 2019 - Pioneering surgery restores movement to children paralyzed by acute flaccid myelitis
January 19, 2019 - Genetic variants linked with risk tolerance and risky behaviors
January 19, 2019 - New research provides better understanding of our early human ancestors
Study provides insight into how the brain decides what to do in the face of danger

Study provides insight into how the brain decides what to do in the face of danger

image_pdfDownload PDFimage_print

Though it has been many millennia since human lives were regularly threatened by predatory wild animals, the brain circuits that ensured our survival then are still very much alive within us today. “Just like any other animal in nature, our reaction to a threat is invariably one of the following three: escape, fight, or freeze in place with the hope of remaining unnoticed”, says Marta Moita, who together with Maria Luisa Vasconcelos led the study conducted at the Champalimaud Centre for the Unknown in Lisbon, Portugal.

“These behaviours are fundamental, but we still don’t know what the rules of the game are: in each situation, how does the brain decide which of the three strategies to implement and how does it ensure that the body carries it through?”, says Ricardo Zacarias, the first author of the study, published today (September 12th) in the scientific journal Nature Communications.

Remarkably, unprecedented insight into these questions came from the common fruit fly. “When we started working on these issues most people believed that flies only escape, but we wondered if that was really true. Even though it’s an insect, the fruit fly is an incredibly powerful model organism that has helped shed light on many difficult problems in biology. So when we decided to delve into the neural basis of defensive behaviour, we asked, what will happen if we expose flies to a threat in a situation where they couldn’t just fly away?”, Moita recalls.

The results were immediately clear. “When we placed the flies in a covered dish and exposed them to an expanding dark circle (which is how a threat looks like to a fly), we saw something completely new: they froze. In fact, just like mammals, they would remain perfectly motionless for minutes on end, sometimes in very awkward positions, such as half crouching, or with a leg or two suspended in the air”, she explains.

But the story didn’t end there. Many of the flies froze, but some didn’t – some ran away from the threat. “This was very exciting”, says Vasconcelos, “because it meant that similarly to humans, the flies were choosing between alternative strategies.”

The team decided to take a closer look at what triggered these different responses by using machine vision software that produced a highly detailed account of the behaviour of the fly. With this information, they discovered something quite unexpected: the flies’ response hinged on their walking speed at the moment the threat appeared. If the fly was moving slowly, it would freeze, but if it was walking quickly, it would run away from the threat. “This result is very important: it is the first report showing how the behavioural state of the animal can influence its choice of defensive strategy”, Vasconcelos points out.

These observations opened the door to identifying the actual neurons that determined whether the fly would flee or freeze. Using state-of-the-art genetic tools, the team found a single pair of neurons important for the flies’ defensive behaviours. “It was quite incredible. There are hundreds of thousands of neurons in the brain of the fly, and among all of those, we found that freezing was controlled by two identical neurons, one on each side of the brain”, she explains.

When the team turned the neurons off, flies didn’t freeze anymore, but they still escaped from the threat. But what was even more remarkable is what happened when they turned the neurons on (without the presence of a threat): flies would freeze in a manner that depended on their walking speed. “If we turned the neurons on when the fly was walking slowly, it would freeze, but not if it was walking quickly. This result places these neurons directly at the gateway of the circuit of choice!”, says Zacarias.

“This is exactly what we were looking for: how the brain decides between competing strategies. And moreover, these neurons are of the type that sends motor commands from the brain to the ‘spinal cord’ of the fly. This means that they may be involved not only in the choice, but also in the execution”, Moita points out.

According to the team, this series of findings starts a whole new field of research in flies. “We can now study directly how the brain makes choices between very different defensive behaviors”, says Moita. “And because defensive behaviours are common to all animals, our discoveries provide a good starting point towards identifying the ‘rules of the game’ that define how all animals choose to defend themselves.”

Source:

https://www.fchampalimaud.org/

Tagged with:

About author

Related Articles