Breaking News
November 15, 2018 - Mass shootings may trigger unnecessary blood donations
November 15, 2018 - From heart disease to cancer: New study tracks shift of county death rates
November 15, 2018 - Preventing falls with new sensor technology
November 15, 2018 - Promising technology could improve detection, diagnosis of fatal ovarian cancer
November 15, 2018 - AAP updates concussion recommendations for children and teens
November 15, 2018 - Two genomic tests help identify most effective treatment for breast cancer patients
November 15, 2018 - Researchers evaluate efficacy of salivary biomarkers for early detection of oral cancer
November 15, 2018 - NIH awards $3.5 million to continue development of robotic system for treating brain tumors
November 15, 2018 - Researchers succeed in building protein nanotubes from tiny scaffolds
November 15, 2018 - Rectal bleeding
November 15, 2018 - Nasal delivery of weight-loss hormone eases breathing problems in sleeping mice
November 15, 2018 - $9.6 million grant to fund research on vascular risk factors for brain aging, dementia | News Center
November 15, 2018 - Gum disease linked with diabetes
November 15, 2018 - Study identifies unique functional brain networks associated with ASD behaviors in infancy
November 15, 2018 - EU and industry-funded project aims to personalize diabetes treatment
November 15, 2018 - NIH researchers shed light on causes of HBV-associated acute liver failure
November 14, 2018 - FDA Alert: Implanted Pumps: Safety Communication
November 14, 2018 - Weight loss & acute Porphyria
November 14, 2018 - Researchers identify three sub-types of depression
November 14, 2018 - The puzzle of a mutated gene lurking behind many Parkinson’s cases | News Center
November 14, 2018 - The mystery viruses far worse than flu
November 14, 2018 - Research highlights physical changes in the brain of self-injuring teen girls
November 14, 2018 - Speed and error rate of DNA synthesis influenced by DNA structure
November 14, 2018 - Cranberry consumption modifies impact of animal-based diet on gut health
November 14, 2018 - £500,000 grant could pave way for new antibiotic to battle against drug-resistant superbugs
November 14, 2018 - Trump Administration Finalizes Birth Control Coverage Opt-Out
November 14, 2018 - Modern life offers children almost everything they need, except daylight
November 14, 2018 - Getting better: A patient is more than a collection of numbers
November 14, 2018 - 20 Americans Die Each Day Waiting For Organs
November 14, 2018 - First bifacial molecule can invade double-stranded DNA or RNA
November 14, 2018 - Study finds lack of safety data for using flowers in cooking
November 14, 2018 - Statistical methods play key role in predicting efficacy of new drugs
November 14, 2018 - Research explores how exercise may help fight drug addiction
November 14, 2018 - Health Tip: Limit Fat, Sugar and Salt in Your Child’s Diet
November 14, 2018 - CA 19-9 Blood Test (Pancreatic Cancer): MedlinePlus Lab Test Information
November 14, 2018 - Old drug could have new use helping sick premature babies
November 14, 2018 - Surgery, not antibiotics, should remain first-line treatment for appendicitis | News Center
November 14, 2018 - Researchers to develop sports-specific classification system for blind football
November 14, 2018 - Preschool children show awake responses to naptime nonsense words
November 14, 2018 - Researchers develop innovative treatment to repair damaged brain tissues
November 14, 2018 - Survey shows negative effect of vulvovaginal atrophy symptoms on quality of life for women
November 14, 2018 - Study sheds light on mechanisms that prevent autoimmune attack
November 14, 2018 - Sleep quality found to be worse for women who undergo surgical menopause
November 14, 2018 - One-hour cognitive behavioral therapy session reduces insomnia symptoms in prisoners
November 14, 2018 - New study provides deeper insight into chromosome segregation during mitosis
November 14, 2018 - Surgical menopause leads to more disrupted sleep than natural menopause
November 14, 2018 - Inhibition of one protein clears toxic clumps seen in Parkinson’s disease, study finds
November 14, 2018 - Appendix removal is linked to lower risk of Parkinson’s
November 14, 2018 - Lifting weights for less than an hour a week may reduce cardiovascular disease risk
November 14, 2018 - Pulmonary rehabilitation rarely received by hospitalized COPD patients despite health benefits
November 14, 2018 - New anti-HER2 drug shows promising anti-tumor activity in gullet, stomach and bowel cancers
November 14, 2018 - Regular head circumference assessment of preterm babies can help identify long-term IQ problems
November 14, 2018 - Brigham investigators examine opioid use among Massachusetts adolescents, prescription trends
November 14, 2018 - Study defines biomarker in response to treatment of castration-resistant prostate cancer
November 14, 2018 - Study identifies potential therapeutic strategy for patients with clear cell renal cancer
November 14, 2018 - Bausch Health Announces U.S. Launch of Bryhali (halobetasol propionate) Lotion, 0.01%, for Plaque Psoriasis In Adults
November 14, 2018 - Alpha Fetoprotein (AFP) Tumor Marker Test: MedlinePlus Lab Test Information
November 14, 2018 - Researchers evaluate controversial treatment for Parkinson’s disease psychosis
November 14, 2018 - AI could help veterinarians code their notes
November 14, 2018 - Pre-schoolers with autism thrive in mainstream classroom settings
November 14, 2018 - Individual and work-related factors may help promote hospital physician engagement, finds study
November 14, 2018 - Complementary and alternative medicine is widely used by general population in England
November 14, 2018 - Study reveals link between tobacco availability and smoking during pregnancy
November 14, 2018 - Purdue researchers develop translucent base for silicon patches to deliver exact doses of biomolecules
November 14, 2018 - New technology based on moths and magnets could help treat genetic diseases
November 14, 2018 - Concussion-Related Biomarkers Vary Based on Sex, Race
November 14, 2018 - One more year of high school may shape waistlines later in life
November 14, 2018 - Dissecting high drug costs – Scope
November 14, 2018 - Study shows novel strategy to reduce breast cancer bone metastasis
November 14, 2018 - Empowering the NHS through Industry Partnerships
November 14, 2018 - One size does not fit all in obesity treatment, study finds
November 14, 2018 - Seeking ways to prevent ‘secondary cataracts’
November 14, 2018 - Change Within the Eye May Be Early Warning for Macular Degeneration
November 14, 2018 - Study of 500,000 people clarifies the risks of obesity
November 14, 2018 - Ultrasound releases drug to alter activity in targeted brain areas in rats | News Center
November 14, 2018 - Umass Amherst researchers battle against youth suicide in rural Alaska Native communities
November 14, 2018 - Cancer stem cells depend on amino acid metabolism, and it’s proving to be their Achilles’ heel
November 14, 2018 - Epigenetic link found between prenatal exposure to maternal smoking and offspring’s cardio-metabolic health
November 14, 2018 - Meditation, music may change biomarkers of cellular aging and Alzheimer’s disease in older adults
November 14, 2018 - Multidisciplinaryresearch teams selected to study age-related brain disorders
Map of human liver cells reveals molecular make-up of individual cells

Map of human liver cells reveals molecular make-up of individual cells

image_pdfDownload PDFimage_print

A map of the cells in the human liver has been created by University Health Network Transplant Program and University of Toronto researchers, revealing for the first time differences between individual cells at the molecular level which can have a profound impact on their behaviour in tissue, tumours and disease.

Using powerful, state-of-the-art technologies and software engineering, the research team, led by Drs. Sonya MacParland and Ian McGilvray, scientists at University Health Network’s (UHN) Transplant Program, Toronto General Hospital Research Institute and Dr. Gary Bader, Professor at the Donnelly Centre for Cellular and Biomolecular Research at the University of Toronto (U of T), mapped out the cellular landscape of 8,444 individual cells obtained from the tissues of healthy deceased donor human livers.

“For the past 20 years, we have studied the liver as a soup of cells as opposed to its individual components. This makes it difficult to target individual cells that are driving liver disease,” says Dr. MacParland, the lead author of the study and Assistant Professor in the Department of Immunology and the Department of Laboratory Medicine and Pathobiology, U of T.

By examining the gene expression profiles of each of these cells – about 1,500 active genes per cell – the research team found 20 distinct cell populations made up of hepatocytes, endothelial cells, cholangiocytes and various immune cells such as B cells, T cells and Natural Killer (NK) cells.

“These evaluations reveal new aspects of the immunobiology of the liver, such as the presence of two surprisingly distinct populations of liver resident macrophages (“big-eaters” of cellular debris) with inflammatory and non-inflammatory functions,” write the authors in their paper entitled, “Single Cell RNA Sequencing of human liver reveals distinct intrahepatic macrophage populations”, published today in Nature Communications, a peer-reviewed, on-line, open-access journal: http://www.nature.com/ncomms.

“We present a comprehensive view of the liver at single cell resolution that outlines new characteristics of resident cells in the liver, and in particular provides a new map of the human hepatic immune microenvironment,” note the authors.

The authors will also make their research available to the Human Cell Atlas Project, an international, open-access, collaborative effort to map all human cells to help scientists understand how genetic variation impacts disease risk and influences health. Because it is an open, free resource for any researchers in the world, it will accelerate discoveries which will in turn inform new treatments and drug development.

Dr. Ian McGilvray, Research Director, UHN Transplant Program and Associate Professor in the Department of Surgery at U of T, has performed hundreds of liver transplants and cancer surgeries. He wants to change how we treat liver disease. But in order to do that, he says that we need to first understand how the liver functions at the most fundamental level of the single cell.

The variation between cells is huge, he explains, but in 2018, it is surprising how little we know about the liver’s cellular landscape.

The impact of this is that in many cases of liver failure, our only option is transplantation, he says, noting that alternative treatments, reduction of transplant rejection rates and regenerative medicine solutions, can only be found if we understand how liver cells develop and work together within tissues and biological systems.

The urgency to find alternative approaches is spurred on by the increasing burden of liver disease, he says. Up to 23% of obese individuals are at risk of developing fatty liver with inflammation, for example, and more than 70 million people are chronically infected with hepatitis C.

In creating the liver map, the team had to overcome several challenges.

First, the project could only have been possible with a multidisciplinary team consisting of transplant surgeons, immunologists, hepatologists, computer scientists and genomics researchers from different institutions to develop the first-ever map of a solid organ.

Another major problem in studying the human liver is difficulty in accessing fresh tissue. Samples in the study were collected from deceased donor livers deemed acceptable for liver transplantation, with consent and ethics approvals. This makes it unique in the world, in contrast to the standard method of studying the liver from biopsy samples.

A third challenge is isolating single cells from liver tissue. Liver cells such as hepatocytes and others are delicate and often do not survive standard tissue extraction, which may involve chopping, separating and filtering of tissue into smaller parts. During this process, cells often die.

But with the experience gained in transplantation and painstaking trial and error work of many years, the researchers were able to develop the best protocols using enzyme mixtures to gently dislodge cells embedded in the spider web-like net of connective tissue of the liver, without actually harming the fragile cells themselves.

Only then could the team begin studying the molecular make-up of each cell individually. This step is absolutely essential in gaining a deeper understanding of how a small but critical change in a cell can precipitate a disease state within a complex mix of many other cells.

The latest technological advances helped the team to overcome the limitations of previous techniques such as genomics. Although it can analyze many cell types simultaneously “in bulk”, it cannot tease out the critical differences between cells or do so in combination with multiple other data.

Reaching out to their colleagues in the Princess Margaret Genomics Centre with their 10X Genomics Chromium system which excels at the analysis of complex tissues and heterogeneous collections of cells, and to Dr. Gary Bader at U of T’s Donnelly Centre, who developed the state-of-the art data analysis pipeline and custom pathway analysis software for the researchers, the team was then able to map out the genetic and molecular function of each cell and how each one contributes to overall liver function.

“We found some very cool things about the human liver that we did not expect,” says Dr. McGilvray. “Until this study, very little was known about what the liver macrophage – the ‘tank’ of the immune system that destroys foreign substances and co-ordinates the immune response – actually is. We found that there are two distinct populations of macrophages in the human liver, one which is pro-inflammatory and the other anti-inflammatory.”

This new understanding can help scientists to harness these two contrasting macrophages to, for example, achieve “tolerance” of a new donor organ, says Dr. McGilvray. For transplant recipients, he explains, in the future, clinicians may want to downregulate the pro-inflammatory cells and upregulate the anti-inflammatory cells so that the recipient does not reject the new organ, and even may not need to take as many or any immunosuppressive medications.

Dr. MacParland adds that the new liver map gives us a new understanding of many more populations of cells found in a normal liver. Eventually, she says, as the map becomes more and more detailed, we can compare these cells to those in a diseased liver.

Then, she says, we can answer the question: “How can we get the liver back to a normal state?”

Source:

https://www.uhn.ca/corporate/News/PressReleases/Pages/Revealing_the_molecular_mystery_of_human_liver_cells.aspx

Tagged with:

About author

Related Articles