Breaking News
December 18, 2018 - Persistent Discrimination ID’d Among Physician Mothers
December 18, 2018 - Cellphone technology developed to detect HIV
December 18, 2018 - A Stanford doctor hits the field with the 49ers — as their airway management physician
December 18, 2018 - The Rise of Anxiety Baking
December 18, 2018 - Just one night of sleep deprivation increases the urge to eat
December 18, 2018 - Study reveals mechanism behind failed remyelination in MS
December 18, 2018 - New genetic testing method increases the precision of biomarker analysis
December 18, 2018 - Simple technique to effectively treat underdiagnosed cause of debilitating chest pain
December 18, 2018 - Barbershop-based medical intervention can successfully lower blood pressure, new data shows
December 18, 2018 - Food labels have caused changes in consumers’ intake and industry’s use of key additives
December 18, 2018 - Sickest children could benefit from split liver transplants
December 18, 2018 - Scientists create patient-specific model to identify most effective treatment for appendix cancer
December 18, 2018 - Study finds significant use of traditional, complementary and alternative medicines in Sub-Saharan Africa
December 18, 2018 - California Farm Implicated in Outbreak of E. coli Tied to Romaine Lettuce
December 18, 2018 - Mobile health has power to transform HIV/AIDS nursing
December 18, 2018 - Celiac Vaccine in Clinical Trials at Columbia
December 18, 2018 - Research into mental health first aid prompts practical guidance and resources for workplace
December 18, 2018 - Researcher conducts study to investigate peripheral blood markers of Alzheimer’s disease
December 18, 2018 - Researchers identify link between mucus in the small airways and pulmonary fibrosis
December 18, 2018 - EU Commission’s Health Policy Platform to host EKHA program on transplantation
December 18, 2018 - Survivors of childhood Hodgkin lymphoma have high risk of developing solid tumors
December 18, 2018 - Small changes to cafeteria design can get kids to eat healthier, new assessment tool finds
December 18, 2018 - From Machines to Cyclic Compounds
December 18, 2018 - New study reveals best assessment tools to establish delirium severity
December 18, 2018 - Rice University scientists develop synthetic protein switches to control electron flow
December 18, 2018 - Home-based pulmonary function monitoring for teens with Duchenne muscular dystrophy
December 18, 2018 - Researchers identify potential target for new breast cancer treatments
December 18, 2018 - National Biofilms Innovation Centre award grant to Neem Biotech for novel anti-biofilm drug development
December 18, 2018 - Artificial intelligence and the future of medicine
December 18, 2018 - Montana State doctoral student receives grant for her work to improve neuroscience tool
December 18, 2018 - Early postpartum initiation of opioids associated with persistent use
December 18, 2018 - Russian scientists identify molecular ‘switch’ that could be target for treatment of allergic asthma
December 18, 2018 - Surgeons make more mistakes in the operating room during stressful moments, shows study
December 18, 2018 - Immune cells explode themselves to inform about the danger of invading bacteria
December 18, 2018 - Malnutrition in children with Crohn’s disease linked with increased risk of surgical complications
December 18, 2018 - FDA Approves Motegrity (prucalopride) for Adults with Chronic Idiopathic Constipation (CIC)
December 18, 2018 - The long and short of CDK12
December 18, 2018 - Hologic’s Cynosure division introduces TempSure Surgical RF technology in North America
December 18, 2018 - CMR Surgical partners with Nicholson Center to launch U.S.-based training program for Versius
December 18, 2018 - Findings reinforce guidelines for cautious use of antipsychotics in younger populations
December 18, 2018 - Study finds new strains of hepatitis C virus in sub-Saharan Africa
December 18, 2018 - New battery-free, implantable device aids weight loss
December 18, 2018 - Parental alcohol use disorder associated with offspring marital outcomes
December 18, 2018 - Novel Breast Imaging Technique Might Cut Unnecessary Biopsies
December 18, 2018 - What can a snowflake teach us about how cancer spreads in the body?
December 18, 2018 - Management of nausea and vomiting in pregnancy costs the NHS more than previously thought
December 18, 2018 - Green leafy vegetables may reduce risk of developing liver steatosis
December 18, 2018 - Veganism linked to nutrient deficiencies and malnutrition if not planned correctly
December 18, 2018 - Coming Soon: A Tiny Robot You Swallow to Help You Stay Healthy
December 18, 2018 - Modified malaria drug proven effective at inhibiting Ebola
December 18, 2018 - Study finds epigenetic differences in the brains of individuals with schizophrenia
December 18, 2018 - Fitness instructors’ motivational comments influence women’s body satisfaction
December 18, 2018 - Study focuses on modification of lipid nanoparticles for successful brain cell targeting
December 18, 2018 - New gut bacteria may be effective against obesity, metabolic and mental disorders
December 18, 2018 - New two-in-one powder aerosol to upgrade fight against deadly superbugs in lungs
December 18, 2018 - Biofilms feed with swirling flows
December 17, 2018 - Study identifies specific neurological changes related to traumatic brain injury
December 17, 2018 - New study confirms geographic bias in lung allocation for transplant
December 17, 2018 - Research focuses on optimization of solid lipid nanoparticle that encapsulates Vinorelbine bitartrate
December 17, 2018 - Carpal tunnel syndrome – Genetics Home Reference
December 17, 2018 - A novel insulin accelerant
December 17, 2018 - Tips for caring for patients with disabilities, from a mother and physician
December 17, 2018 - Menopause-related sexual, urinary problems tied to worse quality of life
December 17, 2018 - In-school nutrition programs among students limit increases in BMI, finds study
December 17, 2018 - Risk for Hospitalization for Heart Failure Greater With Diabetes
December 17, 2018 - Food assistance may help older adults adhere to diabetes meds
December 17, 2018 - Supporting a family’s goals during a difficult pregnancy
December 17, 2018 - Neurons with Good Housekeeping Are Protected from Alzheimer’s
December 17, 2018 - New approach to tumor analysis could improve prognosis for bowel cancer patients
December 17, 2018 - New ‘epigenetics-based’ cervical cancer test outperforms Pap smear and HPV tests
December 17, 2018 - Ten year follow-up after negative colonoscopy related to reduced risk of colorectal cancer
December 17, 2018 - CTF along with NTAP and Sage announce first-ever open data portal for neurofibromatosis
December 17, 2018 - Intimacy: The Elusive Fountain of Youth?
December 17, 2018 - Will saliva translate to a real diagnostic tool?
December 17, 2018 - DFG establishes nine new Research Units and one new Clinical Research Unit
December 17, 2018 - Assisted living’s breakneck growth leaves patient safety behind
December 17, 2018 - America’s teens report dramatic increase in their use of vaping devices in just one year
December 17, 2018 - Enlarged heart linked to a higher risk of dementia
December 17, 2018 - Prostate cancer detection using MRI now first-line investigation tool
December 17, 2018 - Loughborough academics part of new project investigating effectiveness of personalized breast cancer screening
A Preclinical Solution to Studying Neurological Diseases

A Preclinical Solution to Studying Neurological Diseases

image_pdfDownload PDFimage_print

An interview with Antti Nurmi, to discuss the work that Charles River has done using neuroimaging techniques to study neurodegenerative diseases and more rare neurological disorders too, conducted at SfN 2018 by Alina Shrourou, BSc.

Why are animal models important for brain research?

It is very hard to access the human brain, especially tissues of diseased patients. Therefore, animal models are typically used to mimic conditions of human disease, allowing exploration of human disease in a whole animal context when the human functional brain is not accessible for research.

FDG-PET shows widespread glucose uptake deficits in the 12 month CLNGnclf brain. Credit: Charles River

There is a range of neurological diseases that people are suffering from, like Alzheimer’s disease or Parkinson’s disease. These are globally pervasive and extremely problematic conditions, and in the future, will affect both the aging human population and the world’s economy.

Animal models of disease are tools that allow researchers to understand human disease better. They allow us to understand the mechanisms underlying those diseases through different species, and allow us to explore new therapies or therapeutic approaches. Without them, we would not be able to explore whether newly developed therapies would be effective and safe for human patients in single cell or cell culture models.

How has Charles River used neuroimaging in an animal model to develop a biomarker useful for neuroscience research?

Expertise and knowledge in neuroimaging has allowed us to use this technology similarly to how it is used in patients, looking for pathological signs of disease and potential improvement in response to therapies. In clinical neuroscience research, the typical way of diagnosing patients is using imaging like MRI, PET or CT, together with neurological symptoms, which can give physicians the ability to understand what disease the patient is suffering from or how far the disease state has progressed.

About ten years ago, we adopted similar practices, but for preclinical research. We use imaging in animal models, where we can look at the very similar phenomenon in animal species that are happening in human patients. Use of animal models as surrogate tools when human material is not available for research use is warranted in early drug development to evaluate if new therapies are effective and safe, before giving these therapies to patients. Imaging is considered to be the translational part of the research, to essentially use similar methods in animal models as what is being used in patients in clinical practice.

This approach may bring an additional level of confidence to drug programs. The use of imaging helps to understanding the underlying disease itself, and how we can address it from a therapeutic point of view. Imaging may also indicate early signs of adverse drug effects, which are important to identify to avoid exposing patients to potentially harmful new therapies.

I noticed that Charles River will be presenting information on Batten’s Disease at Neuroscience 2018. Please outline Charles River’s research involvement in this rare disease.

Batten’s disease is a rare, monogenic disease, which means that it is caused by a mutation in a particular gene coding a particular protein. There are mutations in different genes affected in patient populations, but the most prevalent form is a mutation in CLN3 gene leading to juvenile form of Batten’s disease. It belongs to the category of lysosomal storage diseases and is often lethal and devastating to patients, and their families.

There are currently no truly effective therapies available for various forms of Batten’s disease. When a disease is rare, like Batten’s, there are usually fewer therapeutic options available and fewer companies focusing on developing therapies against them.

Batten’s disease and lysosomal storage diseases are relatively new areas for us, although we have been working with rare diseases for many years. A few years ago we identified, and got excited about, the work that was done by Dr. David Pearce and Dr. Jill Weimer at Sanford Research institute in Sioux Fall in North Dakota. We approached them in terms of partnership and collaboration, by offering our technological tool kit for their research, while gaining knowledge and expertise about Batten’s disease from them, which at the time was unknown territory to us.

We started working with them to understand the commonly used animal models of Batten’s disease, their phenotype and tools that they are using in their basic research. We wanted to see whether we could bring new, exciting technologies to those models and if we could somehow help in harnessing these models better for drug development purposes. Also, we want to advance basic science.

We provided our neuroimaging solutions, expertise and some novel biomarker tools to be explored. Our collaboration turned out to be very successful, we learned a lot and I believe we brought novel solutions to these relatively well-known models of Batten’s disease. Our hope is that our collaborative findings can be used in the context of drug development, hopefully allowing researchers to be more confident about their findings when using the tools we have used and this way to link animal model research to human disease better.

We identified certain things in Batten’s disease models that could be considered biomarkers, but not conventional ones which are typically evaluated. We have now identified new biomarkers related to imaging, including structural or metabolic changes that occur in the brain which have been difficult to evaluate over time. The markers in animal models that we have identified are also similar to changes that are seen in Batten’s disease patients.

How are high-risk mutations identified for neurodegenerative diseases and how can these be used to study the disease?

For particular diseases, there may be multiple genes that are linked to higher risk of developing a neurological disease. They are not necessarily causative, meaning that that gene itself, or the mutation in a particular gene, is not necessarily causing the disease but they are increasing the likelihood of individuals to develop it. For example, in Alzheimer’s or Parkinson’s disease, there are multiple known genes or mutations on those genes that have been identified in the patients, while the cause of the disease is still unclear.

Identifying these risk genes may help clinicians and researchers in early intervention or treatment regimen if patients are at higher risk of developing a disease. Currently, for many chronic and progressive neurological diseases, like Alzheimer’s and Parkinson’s disease, this could mean a change in patient’s diet or increase in physical exercise, besides drug therapies, for which patients influence the progression of the disease.

In addition to known high-risk genes, there’s a steady stream of research describing new mutations or genes which may be affecting the disease course. However, since the genetic burden in Alzheimer’s and Parkinson’s disease is very complex and involves multiple genes, as opposed to contribution of single gene (monogenic) it is very difficult to determine which ones are the most important, or how they are really contributing to the disease. However, as described earlier, some mutations in the particular genes are resulting in the disease, so they are no longer risk genes but rather causative factors of the disease. This is something that we know is the case in Batten’s disease or in Huntington’s disease, another rare disease.

Please describe Charles River’s work involving the use of human stem cells to test potential treatments for motor neurone disease.

Human stem cells are a very popular and promising research tool allowing understanding the mechanisms underlying human disease by using a patient’s own cells. Human stem cells, ideally derived from patients and having a genetic make-up and cell functions for a given disease, like motor neuron disease, are very powerful because they are derived from the patients themselves. They link research more directly human disease even though the model system is in a dish rather than fully functional organism or species. With the ability to use patient samples and patient cells, including material from patients suffering from motor neuron diseases like ALS, we are linking our research directly to the patient biology.

Using animal models of disease, which have been created by genetically modifying a mouse or other species, we can obtain non-human models that have close to human disease properties. However, these models are more or less artificially created to model human disease-like conditions in an animal. Human stem cells on the other hand have features that are directly linked to the diseased patients themselves, which can bring an additional level of confidence to a drug program or disease biology. Especially if you see a novel therapeutic agent being efficacious in human cells rather than in mouse cells.

What can Charles River provide to the scientific community at Neuroscience 2018?

We are here at Neuroscience annual meeting every year and this is the biggest event for Charles River in terms of neuroscience. This is a perfect venue to meet with new and existing partners and collaborators. We also want to stay involved in the progress of neuroscience research and we have many scientific posters each year we present during the meeting. However, our main focus is to provide research services and expertise for pharmaceutical and biotech industry clients, who are developing new therapeutic modalities for known neurodegenerative, psychiatric disorders and rare diseases.

GRAY MATTERS: BIOMARKER SIGNATURES FOR BATTEN DISEASE (VIDEO). Credit: http://eureka.criver.com/gray-matters-biomarker-signatures-for-battens-disease-video/

We have a large range of tools and technologies available and we are continuously developing and adopting new ones to be in the forefront of neuroscience research. We have historically made technologies available that have translational properties and can be coupled with animal models. We also offer cellular models, including human stem cells, which our clients can use in their drug programs at various stages of the development.

In the neuroscience field, there is a low success rate in getting drugs to the market. We are trying to bring success to drug development by introducing high quality and translational technologies and drug development expertise. However, as an organization we are equipped to support any drug program from early therapeutic target identification and validation all the way through safety assessments before the drug is given for the first time to humans. The full breadth of the services, technologies and expertise that Charles River offers to its clients and partners are available to maximize the chances of success of any drug program.

About Antti Nurmi

Antti Nurmi has over 15 years of experience in the life science industry, with the last 10 spent in various roles of scientific leadership roles at Charles River. He earned his PhD from the University of Kuopio in Finland, where his work focused on brain research and the molecular mechanisms behind stroke pathology.

He received his MSc in physiology from the University of Joensuu, Finland, where he specialized in cardiac electrophysiology (particularly ion channel physiology and the use of patch-clamping techniques). Dr. Nurmi has published on a variety of topics ranging from cardiac ion channel physiology to therapeutic approaches against disease pathology in stroke and Alzheimer’s disease.

Tagged with:

About author

Related Articles