Breaking News
May 3, 2019 - Vaping and Smoking May Signal Greater Motivation to Quit
May 3, 2019 - Dementia looks different in brains of Hispanics
May 3, 2019 - Short-Staffed Nursing Homes See Drop In Medicare Ratings
May 3, 2019 - Study of teens with eating disorders explores how substance users differ from non-substance users
May 3, 2019 - Scientists develop new video game that may help in the study of Alzheimer’s
May 3, 2019 - Arc Bio introduces Galileo Pathogen Solution product line at ASM Clinical Virology Symposium
May 3, 2019 - Cornell University study uncovers relationship between starch digestion gene and gut bacteria
May 3, 2019 - How to Safely Use Glucose Meters and Test Strips for Diabetes
May 3, 2019 - Anti-inflammatory drugs ineffective for prevention of Alzheimer’s disease
May 3, 2019 - Study tracks Pennsylvania’s oil and gas waste-disposal practices
May 3, 2019 - Creating a better radiation diagnostic test for astronauts
May 3, 2019 - Vegans are often deficient in these four nutrients
May 3, 2019 - PPDC announces seed grants to develop medical devices for children
May 3, 2019 - Study maps out the frequency and impact of water polo head injuries
May 3, 2019 - Research on Reddit identifies risks associated with unproven treatments for opioid addiction
May 3, 2019 - Good smells may help ease tobacco cravings
May 3, 2019 - Medical financial hardship found to be very common among people in the United States
May 3, 2019 - Researchers develop multimodal system for personalized post-stroke rehabilitation
May 3, 2019 - Study shows significant mortality benefit with CABG over percutaneous coronary intervention
May 3, 2019 - Will gene-editing of human embryos ever be justifiable?
May 3, 2019 - FDA Approves Dengvaxia (dengue vaccine) for the Prevention of Dengue Disease in Endemic Regions
May 3, 2019 - Why Tonsillitis Keeps Coming Back
May 3, 2019 - Fighting the opioid epidemic with data
May 3, 2019 - Maggot sausages may soon be a reality
May 3, 2019 - Deletion of ATDC gene prevents development of pancreatic cancer in mice
May 2, 2019 - Targeted Therapy Promising for Rare Hematologic Cancer
May 2, 2019 - Alzheimer’s disease is a ‘double-prion disorder,’ study shows
May 2, 2019 - Reservoir bugs: How one bacterial menace makes its home in the human stomach
May 2, 2019 - Clinical, Admin Staff From Cardiology Get Sneak Peek at Epic
May 2, 2019 - Depression increases hospital use and mortality in children
May 2, 2019 - Vicon and NOC support CURE International to create first gait lab in Ethiopia
May 2, 2019 - Researchers use 3D printer to make paper organs
May 2, 2019 - Viral infection in utero associated with behavioral abnormalities in offspring
May 2, 2019 - U.S. Teen Opioid Deaths Soaring
May 2, 2019 - Opioid distribution data should be public
May 2, 2019 - In the Spotlight: “I’m learning every single day”
May 2, 2019 - 2019 Schaefer Scholars Announced
May 2, 2019 - Podcast: KHN’s ‘What The Health?’ Bye-Bye, ACA, And Hello ‘Medicare-For-All’?
May 2, 2019 - Study describes new viral molecular evasion mechanism used by cytomegalovirus
May 2, 2019 - SLU study suggests a more equitable way for Medicare reimbursement
May 2, 2019 - Scientists discover first gene involved in lower urinary tract obstruction
May 2, 2019 - Researchers identify 34 genes associated with increased risk of ovarian cancer
May 2, 2019 - Many low-income infants receive formula in the first few days of life, finds study
May 2, 2019 - Global study finds high success rate for hip and knee replacements
May 2, 2019 - Taking depression seriously: What is it?
May 2, 2019 - With Head Injuries Mounting, Will Cities Put Their Feet Down On E-Scooters?
May 2, 2019 - Scientists develop small fluorophores for tracking metabolites in living cells
May 2, 2019 - Study casts new light into how mothers’ and babies’ genes influence birth weight
May 2, 2019 - Researchers uncover new brain mechanisms regulating body weight
May 2, 2019 - Organ-on-chip systems offered to Asia-Pacific regions by Sydney’s AXT
May 2, 2019 - Adoption of new rules drops readmission penalties against safety net hospitals
May 2, 2019 - Kids and teens who consume zero-calorie sweetened beverages do not save calories
May 2, 2019 - Improved procedure for cancer-related erectile dysfunction
May 2, 2019 - Hormone may improve social behavior in autism
May 2, 2019 - Alzheimer’s disease may be caused by infectious proteins called prions
May 2, 2019 - Even Doctors Can’t Navigate Our ‘Broken Health Care System’
May 2, 2019 - Study looks at the impact on criminal persistence of head injuries
May 2, 2019 - Honey ‘as high in sugars as table sugar’
May 2, 2019 - Innovations to U.S. food system could help consumers in choosing healthy foods
May 2, 2019 - FDA Approves Mavyret (glecaprevir and pibrentasvir) as First Treatment for All Genotypes of Hepatitis C in Pediatric Patients
May 2, 2019 - Women underreport prevalence and intensity of their own snoring
May 2, 2019 - Concussion summit focuses on science behind brain injury
May 2, 2019 - Booker’s Argument For Environmental Justice Stays Within The Lines
May 2, 2019 - Cornell research explains increased metastatic cancer risk in diabetics
May 2, 2019 - Mount Sinai study provides fresh insights into cellular pathways that cause cancer
May 2, 2019 - Researchers to study link between prenatal pesticide exposures and childhood ADHD
May 2, 2019 - CoGEN Congress 2019: Speakers’ overviews
May 2, 2019 - A new strategy for managing diabetic macular edema in people with good vision
May 2, 2019 - Sagent Pharmaceuticals Issues Voluntary Nationwide Recall of Ketorolac Tromethamine Injection, USP, 60mg/2mL (30mg per mL) Due to Lack of Sterility Assurance
May 2, 2019 - Screen time associated with behavioral problems in preschoolers
May 2, 2019 - Hormone reduces social impairment in kids with autism | News Center
May 2, 2019 - Researchers synthesize peroxidase-mimicking nanozyme with low cost and superior catalytic activity
May 2, 2019 - Study results of a potential drug to treat Type 2 diabetes in children announced
May 2, 2019 - Multigene test helps doctors to make effective treatment decisions for breast cancer patients
May 2, 2019 - UNC School of Medicine initiative providing unique care to dementia patients
May 2, 2019 - Nestlé Health Science and VHP join forces to launch innovative COPES program for cancer patients
May 2, 2019 - Study examines how our brain generates consciousness and loses it during anesthesia
May 2, 2019 - Transition Support Program May Aid Young Adults With Type 1 Diabetes
May 2, 2019 - Study shows how neutrophils exacerbate atherosclerosis by inducing smooth muscle-cell death
May 2, 2019 - Research reveals complexity of how we make decisions
Synthetic biologists add analog-to-digital signal processing to genetic circuitry of living cells

Synthetic biologists add analog-to-digital signal processing to genetic circuitry of living cells

Synthetic biologists have added high-precision analog-to-digital signal processing to the genetic circuitry of living cells. The research, described online today in the journal Science, dramatically expands the chemical, physical and environmental cues engineers can use to prompt programmed responses from engineered organisms.

Using a biochemical process called cooperative assembly, Caleb Bashor of Rice University, Ahmad “Mo” Khalil of Boston University (BU) and colleagues from MIT, Harvard, the Broad Institute and Brandeis University engineered genetic circuits that were able to both decode frequency-dependent signals and conduct dynamic signal filtering.

“You can think about cooperativity as the same type of signal-processing feature that gives you an analog-to-digital converter, a device that takes something that’s basically linear and turns it into something switchlike,” said Bashor, co-lead author of the study and an assistant professor of bioengineering in Rice’s Brown School of Engineering.

Synthetically engineering cooperative assembly allowed the researchers to perform the type of combinatorial signal processing that cells naturally and elegantly do to accomplish intricate tasks, like those in embryonic development and differentiation.

“This work is a tour de force of synthetic biology that addresses a major question in how cells process information at the DNA level,” said Tom Ellis, Reader in Synthetic Genome Engineering in the department of bioengineering at Imperial College London, who was not involved in the study. “It’s well known that nature has perfected very powerful information processing with only a small number of parts, but deconvoluting precisely how this works is virtually impossible in human cells due to their complexity. By recreating the way human cells process information at the DNA level, but in a simple yeast cell model with synthetic parts, they have been able to recreate complex signaling from first principles. This is an excellent example of how thinking like an engineer can unlock a new way to answer major biology questions.”

In nature, cells often have to make black-and-white decisions based on information that’s gray. For example, imagine a cell has a gene that allows it survive in a highly acidic environment, but it takes a good deal of energy to activate that gene and get the protection. Through billions of years of natural selection, cells that activate the gene too early or too late get outcompeted by those that make the decision at the optimum time to both ensure survival and expend the least amount of energy.

“That type of precision is a desirable property to have in synthetic circuits, too,” said Bashor, who joined Rice in 2018 and began the project several years earlier during a postdoctoral stint at BU. “Nature often does it through a process called cooperative self-assembly, where several proteins called transcription factors self-assemble into a larger complex. Only when they come together is the switch thrown.”

Bashor, Khalil and colleagues engineered cooperative self-assembly by inventing a modular system of synthetic protein components that can assemble into complexes of varying size. In this system, engineered cells are programmed to produce assembly components in response to whatever input the engineers wish to use to activate the circuit. For example, in their experiments, Bashor, Khalil and colleagues programmed yeast to respond to two different drugs that were administered in varying concentrations via a microfluidic device.

In this way, the concentration of component molecules produced inside the yeast rose and fell in response to the analog input — the concentration of drugs in the test chamber.

“Basically, these components bind to one another with extremely weak interactions,” Bashor said. “But all of those weak interactions add up, in a bigger complex, to something that’s really tight. So, when there’s very few of them floating around, they won’t form the complex. And when they reach a critical concentration, they see each other, and they can basically come together and form the complex.”

The sharpness of a response — one that happens quickly at precisely the intended time — is key for digital precision. Bashor and Khalil designed activation complexes that contained as few as two transcription-factor components and as many as six, and their experiments showed that the larger the complex, the sharper the critical response.

“Engineering this type of response into transcription factors was central for allowing us to program cells to perform a diverse array of complex functions, such as Boolean logic, time-dependent filtering and even frequency decoding,” said Khalil, the corresponding author on the study.

Bashor said the bulk of the four-year project was spent refining a predictive model that can guide other engineers in using the system to design analog-to-digital converters that can respond as intended even to multiple incoming signals.

To demonstrate this aspect of the work, the team designed and demonstrated signal-processing circuits reminiscent of microelectronics, including low-pass filters that responded only to low-frequency drug inputs and band-stop filters that were activated only at high frequencies.

“Our work shows how the nonlinearity of transcription factor complexes can be used to engineer signal processing in synthetic gene circuits, expanding their functionality and real-world utility,” said synthetic biologist and study co-author James Collins, who holds joint appointments at MIT, Harvard and the Broad Institute.

Going forward, Bashor’s Rice lab plans to use the analog-to-digital converter and other synthetic gene circuits to explore and manipulate the regulatory programs that guide immune and stem cell functions with an eye on developing transformational cell-based therapeutics from engineered human cells.

Tagged with:

About author

Related Articles