Breaking News
May 3, 2019 - Vaping and Smoking May Signal Greater Motivation to Quit
May 3, 2019 - Dementia looks different in brains of Hispanics
May 3, 2019 - Short-Staffed Nursing Homes See Drop In Medicare Ratings
May 3, 2019 - Study of teens with eating disorders explores how substance users differ from non-substance users
May 3, 2019 - Scientists develop new video game that may help in the study of Alzheimer’s
May 3, 2019 - Arc Bio introduces Galileo Pathogen Solution product line at ASM Clinical Virology Symposium
May 3, 2019 - Cornell University study uncovers relationship between starch digestion gene and gut bacteria
May 3, 2019 - How to Safely Use Glucose Meters and Test Strips for Diabetes
May 3, 2019 - Anti-inflammatory drugs ineffective for prevention of Alzheimer’s disease
May 3, 2019 - Study tracks Pennsylvania’s oil and gas waste-disposal practices
May 3, 2019 - Creating a better radiation diagnostic test for astronauts
May 3, 2019 - Vegans are often deficient in these four nutrients
May 3, 2019 - PPDC announces seed grants to develop medical devices for children
May 3, 2019 - Study maps out the frequency and impact of water polo head injuries
May 3, 2019 - Research on Reddit identifies risks associated with unproven treatments for opioid addiction
May 3, 2019 - Good smells may help ease tobacco cravings
May 3, 2019 - Medical financial hardship found to be very common among people in the United States
May 3, 2019 - Researchers develop multimodal system for personalized post-stroke rehabilitation
May 3, 2019 - Study shows significant mortality benefit with CABG over percutaneous coronary intervention
May 3, 2019 - Will gene-editing of human embryos ever be justifiable?
May 3, 2019 - FDA Approves Dengvaxia (dengue vaccine) for the Prevention of Dengue Disease in Endemic Regions
May 3, 2019 - Why Tonsillitis Keeps Coming Back
May 3, 2019 - Fighting the opioid epidemic with data
May 3, 2019 - Maggot sausages may soon be a reality
May 3, 2019 - Deletion of ATDC gene prevents development of pancreatic cancer in mice
May 2, 2019 - Targeted Therapy Promising for Rare Hematologic Cancer
May 2, 2019 - Alzheimer’s disease is a ‘double-prion disorder,’ study shows
May 2, 2019 - Reservoir bugs: How one bacterial menace makes its home in the human stomach
May 2, 2019 - Clinical, Admin Staff From Cardiology Get Sneak Peek at Epic
May 2, 2019 - Depression increases hospital use and mortality in children
May 2, 2019 - Vicon and NOC support CURE International to create first gait lab in Ethiopia
May 2, 2019 - Researchers use 3D printer to make paper organs
May 2, 2019 - Viral infection in utero associated with behavioral abnormalities in offspring
May 2, 2019 - U.S. Teen Opioid Deaths Soaring
May 2, 2019 - Opioid distribution data should be public
May 2, 2019 - In the Spotlight: “I’m learning every single day”
May 2, 2019 - 2019 Schaefer Scholars Announced
May 2, 2019 - Podcast: KHN’s ‘What The Health?’ Bye-Bye, ACA, And Hello ‘Medicare-For-All’?
May 2, 2019 - Study describes new viral molecular evasion mechanism used by cytomegalovirus
May 2, 2019 - SLU study suggests a more equitable way for Medicare reimbursement
May 2, 2019 - Scientists discover first gene involved in lower urinary tract obstruction
May 2, 2019 - Researchers identify 34 genes associated with increased risk of ovarian cancer
May 2, 2019 - Many low-income infants receive formula in the first few days of life, finds study
May 2, 2019 - Global study finds high success rate for hip and knee replacements
May 2, 2019 - Taking depression seriously: What is it?
May 2, 2019 - With Head Injuries Mounting, Will Cities Put Their Feet Down On E-Scooters?
May 2, 2019 - Scientists develop small fluorophores for tracking metabolites in living cells
May 2, 2019 - Study casts new light into how mothers’ and babies’ genes influence birth weight
May 2, 2019 - Researchers uncover new brain mechanisms regulating body weight
May 2, 2019 - Organ-on-chip systems offered to Asia-Pacific regions by Sydney’s AXT
May 2, 2019 - Adoption of new rules drops readmission penalties against safety net hospitals
May 2, 2019 - Kids and teens who consume zero-calorie sweetened beverages do not save calories
May 2, 2019 - Improved procedure for cancer-related erectile dysfunction
May 2, 2019 - Hormone may improve social behavior in autism
May 2, 2019 - Alzheimer’s disease may be caused by infectious proteins called prions
May 2, 2019 - Even Doctors Can’t Navigate Our ‘Broken Health Care System’
May 2, 2019 - Study looks at the impact on criminal persistence of head injuries
May 2, 2019 - Honey ‘as high in sugars as table sugar’
May 2, 2019 - Innovations to U.S. food system could help consumers in choosing healthy foods
May 2, 2019 - FDA Approves Mavyret (glecaprevir and pibrentasvir) as First Treatment for All Genotypes of Hepatitis C in Pediatric Patients
May 2, 2019 - Women underreport prevalence and intensity of their own snoring
May 2, 2019 - Concussion summit focuses on science behind brain injury
May 2, 2019 - Booker’s Argument For Environmental Justice Stays Within The Lines
May 2, 2019 - Cornell research explains increased metastatic cancer risk in diabetics
May 2, 2019 - Mount Sinai study provides fresh insights into cellular pathways that cause cancer
May 2, 2019 - Researchers to study link between prenatal pesticide exposures and childhood ADHD
May 2, 2019 - CoGEN Congress 2019: Speakers’ overviews
May 2, 2019 - A new strategy for managing diabetic macular edema in people with good vision
May 2, 2019 - Sagent Pharmaceuticals Issues Voluntary Nationwide Recall of Ketorolac Tromethamine Injection, USP, 60mg/2mL (30mg per mL) Due to Lack of Sterility Assurance
May 2, 2019 - Screen time associated with behavioral problems in preschoolers
May 2, 2019 - Hormone reduces social impairment in kids with autism | News Center
May 2, 2019 - Researchers synthesize peroxidase-mimicking nanozyme with low cost and superior catalytic activity
May 2, 2019 - Study results of a potential drug to treat Type 2 diabetes in children announced
May 2, 2019 - Multigene test helps doctors to make effective treatment decisions for breast cancer patients
May 2, 2019 - UNC School of Medicine initiative providing unique care to dementia patients
May 2, 2019 - Nestlé Health Science and VHP join forces to launch innovative COPES program for cancer patients
May 2, 2019 - Study examines how our brain generates consciousness and loses it during anesthesia
May 2, 2019 - Transition Support Program May Aid Young Adults With Type 1 Diabetes
May 2, 2019 - Study shows how neutrophils exacerbate atherosclerosis by inducing smooth muscle-cell death
May 2, 2019 - Research reveals complexity of how we make decisions
Delving into tumor’s cellular lineage may offer clues for customized therapies

Delving into tumor’s cellular lineage may offer clues for customized therapies

To explain a person’s actions in the present, it sometimes helps to understand their past, including where they come from and how they were raised. This is also true of tumors. Delving into a tumor’s cellular lineage, a Ludwig Cancer Research study shows, can reveal weaknesses to target for customized therapies.

The findings, detailed in the April 24 issue of the journal Nature, also illustrate how knowledge of the biochemistry and microenvironment of the tissue from which a tumor arises can help predict the genetic alterations its cancer cells are likely to undergo.

“We’re trying to understand what might make a cancer vulnerable to precision oncology,” said Paul Mischel, a member at the San Diego Branch of the Ludwig Institute for Cancer Research, who led the study. “These findings suggest that understanding the interactions between genes and environments can lead to potentially more effective, selective and specific ways to treat cancer.”

In their study, Mischel and his colleagues, including Ludwig San Diego’s Bing Ren, postdoctoral fellow Sudhir Chowdhry and Vineet Bafna, computer science professor at the University of California, San Diego (UCSD), analyzed more than 7,000 tumors from 200 cancer studies and 2,600 normal samples of 19 different tissue types. They identified two simple patterns, or “rules,” that had to do with the production of nicotinamide adenine dinucleotide (NAD), a biomolecule essential to metabolism and a broad range of other vital cellular processes.

First, tumors arising in tissues whose cells normally express high levels of an enzyme known as NAPRT become dependent on one of three available pathways to generate NAD. Secondly, cancers of tissues where NAPRT expression is not normally elevated end up relying on a different pathway to make the crucial biomolecule.

“NAD is a critical ingredient of cells,” said Mischel, who is also a professor of pathology at UCSD. “It’s vital to the DNA damage response and is also involved in epigenetic regulation,” the chemical tagging of the genome that regulates gene expression.

NAD is so important that healthy cells have three different ways of generating it, so that if one method fails, a backup is always available. “Using genetic approaches, we showed in a very rigorous way that healthy cells really do have the capacity to use any of those pathways,” said Mischel. “Cancer cells are different.”

Mischel and his colleagues noticed that cancer cells arising from tissues where NAPRT levels are high to begin with tend to have multiple copies of the NAPRT gene (and/or one other critical gene in the PH pathway called NADSYN1) and so produce even more NAPRT. These cancer cells rely exclusively on the so-called Preiss-Handler (PH) pathway to produce NAD. Inhibiting or depleting NAPRT in these cells leads to tumor death.

“It appears that the type of tissue from which tumors arise may be quite important for determining which NAD biosynthesis pathway is chosen,” Mischel said.

In contrast, cancer cells arising from tissues where NAPRT levels are not normally elevated produce NAD using another method called the salvage pathway, and they do this by remodeling their epigenome. Most important: In both cases, the cancer cells lose the ability to use other means of producing NAD.

“They have to make a pathway choice, and they can’t switch,” Mischel said. “They effectively become addicted to either the PH or the salvage pathway.”

To demonstrate how these tumor addictions might be exploited, the researchers implanted engineered human ovarian cancer cells addicted to the PH pathway into the left side of mice and human lung cancer cells hooked on the salvage pathway into their right sides. The ovarian tumors shrank when genes important for the PH pathway were silenced using genetic engineering approaches, but not when key proteins in the salvage pathway were depleted. The lung tumors showed the opposite effect: they shrank only when salvage pathway proteins were depleted.

The team also demonstrated how the same effect could be achieved with drugs. Currently, there are no drug inhibitors for the PH pathway in mammalian cells, but the scientists found that a compound known to block NADSYN in bacteria was also effective against the human tumors.

Mischel and Ren’s groups, and their colleagues, will continue to work together to better understand the processes and specific molecular events that drive the cancer cell’s addiction to a particular NAD biosynthesis pathway.

Source:

http://www.ludwigcancerresearch.org/news/studying-cell-lineage-tumors-reveals-targetable-vulnerabilities

Tagged with:

About author

Related Articles