Breaking News
January 22, 2019 - New machine learning algorithms identify early symptoms of urinary tract infections
January 22, 2019 - A global influenza pandemic high on the WHO’s agenda
January 22, 2019 - Amgen Makes All Repatha (evolocumab) Device Options Available In The US At A 60 Percent Reduced List Price
January 22, 2019 - Elastronics—hydrogel-based microelectronics for localized low-voltage neuromodulation
January 22, 2019 - Branched-chain amino acids in tumors can be targeted to prevent and treat cancer
January 22, 2019 - Fueling macrophages with energy to attack and eat cancer cells
January 22, 2019 - Amgen And UCB Receive Positive Vote From FDA Advisory Committee In Favor Of Approval For Evenity (romosozumab)
January 22, 2019 - Does being bilingual make children more focused? Study says no
January 22, 2019 - Study reveals new genes and biological pathways linked to osteoarthritis
January 22, 2019 - FSU study provides better understanding of spinal cord injuries
January 22, 2019 - Delaying bath for newborn babies increases breastfeeding rates, finds study
January 21, 2019 - WHO identifies non-communicable diseases as major threat to human health
January 21, 2019 - Many parents still try non-evidence-based cold prevention methods for children
January 21, 2019 - High Levels of Activity, Motor Ability Linked to Better Cognition
January 21, 2019 - Killer blows? Knockout study of pair of mouse MicroRNA provides cancer insight
January 21, 2019 - Buffalo researchers receive grant to quicken development of generic equivalents of contraceptives
January 21, 2019 - One-third of pregnant women do not believe cannabis is harmful to their fetus
January 21, 2019 - Fiderstat could be used as chemopreventative drug for intestinal cancers caused by APC gene mutations
January 21, 2019 - Modifying healthcare delivery practices may improve discussions between youth and healthcare providers
January 21, 2019 - UNIST researcher named as recipient of Merck’s 2018 Life Science Awards
January 21, 2019 - How Getting a Flu Shot Could Save Your Life
January 21, 2019 - Surgical adhesions can be treated, prevented in mice
January 21, 2019 - Increased physician-targeted marketing associated with higher opioid overdose deaths
January 21, 2019 - Researchers uncover specific microbial signatures of intestinal disease
January 21, 2019 - Researchers discover new blood vessel system in bones
January 21, 2019 - Simple blood test reliably detects signs of Alzheimer’s damage before symptoms
January 21, 2019 - Study to investigate new targeted oral treatments for severe asthma
January 21, 2019 - Plan Your Plate | NIH News in Health
January 21, 2019 - Fecal occult blood test may improve CRC outcomes in some
January 21, 2019 - Blood test detects Alzheimer’s disease years before symptoms develop
January 21, 2019 - Mount Sinai joins with Paradigm and ReqMed to repurpose drug for treatment of MPS
January 21, 2019 - FDA Advisory Committee Votes on Zynquista (sotagliflozin) as Treatment for Adults with Type 1 Diabetes
January 21, 2019 - The causes and complications of snoring
January 21, 2019 - Placenta adapts and compensates when pregnant mothers have poor diets or low oxygen
January 21, 2019 - New implant could restore the transmission of electrical signals in injured central nervous system
January 21, 2019 - Rapid-acting fentanyl test strips found to be effective at reducing overdose risk
January 21, 2019 - Coronary Artery Calcium May Help Predict CVD in South Asians
January 21, 2019 - The mystery of the super-ager
January 21, 2019 - Scientists develop smart microrobots that can change shape depending on their surroundings
January 21, 2019 - Keep Moving to Keep Brain Sharp in Old Age
January 21, 2019 - Despite progress, gay fathers and their children still structurally stigmatized
January 21, 2019 - New drug for treating liver parasites in vivax malaria
January 21, 2019 - Merck recognized with 2018 Life Science Industry Award for best use of social media
January 21, 2019 - Coeur Wallis equips the canton of Valais with 260 SCHILLER defibrillators
January 21, 2019 - Scientists propose quick and pain-free method for diagnosing kidney cancer
January 21, 2019 - Signs of memory loss could point to hearing issues
January 21, 2019 - HeartFlow Analysis shows highest diagnostic performance for detecting coronary artery disease
January 21, 2019 - How Much Caffeine is Too Much?
January 21, 2019 - Take a timeout before you force your child to apologize
January 21, 2019 - Scientists design two AI algorithms to improve early detection of cognitive impairment
January 21, 2019 - Novel therapy for children with chronic hormone deficiency provides lifeline for parents
January 21, 2019 - Bioethicists call for oversight of poorly regulated, consumer-grade neurotechnology products
January 21, 2019 - Study shows hereditary hemochromatosis behind many cancers and joint diseases
January 21, 2019 - Short bouts of stairclimbing throughout the day can improve cardiovascular health
January 20, 2019 - Liver Transplant Survival May Improve With Race Matching
January 20, 2019 - Study implicates hyperactive immune system in aging brain disorders
January 20, 2019 - Cancer Diagnosis May Quadruple Suicide Risk
January 20, 2019 - Parkinson’s disease experts devise a roadmap
January 20, 2019 - Research brings new hope to treating degenerative brain diseases
January 20, 2019 - Scientists pinpoint a set of molecules that wire the body weight center of the brain
January 20, 2019 - Researchers get close to developing elusive blood test for Alzheimer’s disease
January 20, 2019 - UCLA researchers demonstrate new technique to develop cancer-fighting T cells
January 20, 2019 - Researchers discover how cancer cells avoid genetic meltdown
January 20, 2019 - Exercise makes even the ‘still overweight’ healthier: study
January 20, 2019 - University of Utah to establish first-of-its-kind dark sky studies minor in the US
January 20, 2019 - School-based nutritional programs reduce student obesity
January 20, 2019 - Improved maternity care practices in the southern U.S. reduce racial inequities in breastfeeding
January 20, 2019 - New enzyme biomarker test indicates diseases and bacterial contamination
January 20, 2019 - Republican and Democratic governors have different visions to transform health care, say researchers
January 20, 2019 - Researchers discover that spin flips happen in only half a picosecond in the course of a chemical reaction
January 20, 2019 - Suicide Risk Up More Than Fourfold for Cancer Patients
January 20, 2019 - Doctors find 122 nails in Ethiopian’s stomach
January 20, 2019 - UV disinfection technology eliminates up to 97.7% of pathogens in operating rooms
January 20, 2019 - Researchers discover mechanism which drives leukemia cell growth
January 20, 2019 - AHA: Infection as a Baby Led to Heart Valve Surgery for Teen
January 20, 2019 - Injection improves vision in a form of childhood blindness
January 20, 2019 - Multiple sclerosis therapies delay progression of disability
January 20, 2019 - New study finds infrequent helmet use among bike share riders
January 20, 2019 - Clearing up information about corneal dystrophies
January 20, 2019 - Researchers describe new behavior in energy metabolism that refutes existing evidence
Researchers work together to solve mystery of motor neuron death in ALS patients

Researchers work together to solve mystery of motor neuron death in ALS patients

image_pdfDownload PDFimage_print

As the old adage goes, ‘two heads are better than one’. With the development of new technologies and increasingly specialist expertise, ground-breaking science needs to be a team effort.

But it isn’t always easy for researchers to work together. Finding the right people to collaborate with can be tricky, especially when some are understandably protective of their ideas.

Then there is the practical challenge of meeting up, exchanging ideas and carrying out the research, miles – and even time zones – apart.

A new study from Crick researchers shows that collaboration can be easy when you are part of a culture that supports it. We caught up with the scientists involved to find out how working together helped them uncover the earliest events in motor neuron disease.

The mystery

Three years ago, a group of clinical neurologists, molecular biologists and computer scientists from different London institutes decided to work together to solve the mystery of why motor neurons die in patients with amyotrophic lateral sclerosis (ALS), also known as motor neuron disease.

As a clinical neurologist, Rickie Patani sees first-hand the impact that ALS has on his patients.

“It’s a really devastating disease,” he says. “Patients progressively lose the ability to move, eat, speak and ultimately breathe.

“We set out to uncover the molecular events that lead to ALS, in the hope that one day we can develop new treatments for patients.”

The suspect

Previous studies had implicated deregulation of RNA – a molecule closely related to DNA that has a vital role in coding, decoding, regulating and expressing genes – in ALS. For instance, patients with a hereditary form of ALS often have genetic mutations that prevent their RNA from functioning properly.

But even with RNA expert Jernej Ule on board, comparing RNA sequencing in healthy and diseased motor neurons couldn’t provide the full picture.

Turning back the clock

Using cutting-edge stem cell technology, scientists in Rickie’s lab took skin cells from healthy volunteers and patients with ALS and turned them into stem cells capable of becoming many other cell types.

Then, using specific chemical signals, they ‘guided’ the stem cells into becoming motor neurons that they could study in the lab.

“By turning back the clock, we could watch what happened to the motor neurons over time to lead to the disease,” says Giulia Tyzack, a researcher in Rickie’s lab. “It was really amazing!”

Digging for treasure

Armed with a whole load of RNA sequencing data from healthy and diseased motor neurons at different stages of disease progression, Jernej and Rickie turned to Nick Luscombe and Raphaelle Luisier to drill down into the data and work out exactly what was going wrong. Nick and Raphaelle are bioinformaticians; highly skilled scientists who develop advanced computational techniques to study biological data.

“Initially, using conventional analysis, we didn’t detect any differences in RNA sequencing between healthy and diseased motor neurons,” says Raphaelle. “But we knew something must have been going wrong to make the ALS motor neurons die, so we wrote a new program to dig deeper into the genetic code – and when the results came back, we knew we were on to something.”

The analysis unearthed what was going wrong in ALS motor neurons. Parts of the RNA sequence that don’t code for proteins are usually cut out before the RNA is translated into protein, but in the ALS motor neurons this wasn’t happening as effectively. This guided the team to collectively discover that a protein called SFPQ, which normally resides inside the cell nucleus, was in fact leaving the nucleus in diseased motor neurons.

“It was like one big treasure hunt,” says Nick. “We had the map, and knew where we were looking, and with enough digging we found the gold!”

Cracking the case

The team had uncovered these molecular hallmarks inside human stem cell models of hereditary ALS. They next confirmed that animal models of hereditary ALS also shared the same features. But to see if the same events could explain non-hereditary forms of the disease, they looked at post-mortem spinal cord tissue from patients.

They found that the loss of SFPQ protein was consistent across the board, whether they looked at cells, mouse models or post-mortem tissue confirming that they had discovered an important molecular hallmark of ALS.

“Now that we know these key events are linked to motor neuron death in people with ALS, we can start to think about how we could develop new ways to detect and treat the disease,” says Rickie.

Under one roof

This project started before the Francis Crick Institute opened its doors to scientists in the summer of 2016.

For the first couple of years, the team were worked together across different sites, meeting up to share ideas when they could.

But since spring 2017, this scientific ‘dream team’ have all come together under one roof here at the Crick.

“It’s unbelievable how much of a difference it made all being two minutes’ walk from each other,” says Jernej. “The project was going well even when we were working in different institutes in London, but being able to chat to each other almost every day speeds things up dramatically. We finished the project within a year, while it might have taken two years or more if we weren’t all here at the Crick.”

By combining cellular models of motor neuron development, measurements of protein-RNA interactions and detailed statistical analysis, this diverse team of Crick scientists have shed light on potential causes of ALS, opening new opportunities to intervene and develop treatments.

This discovery goes to show that when it comes to science, two heads (or more) really are better than one.

Source:

https://www.crick.ac.uk/news/science-news/2018/05/25/scientific-dream-team-shed-light-on-motor-neuron-death/

Tagged with:

About author

Related Articles