Breaking News
December 11, 2018 - Lund University researchers succeed in obtaining dendritic cells by direct reprogramming
December 11, 2018 - Breast tumors recruit bone marrow cells to boost their growth, study reveals
December 11, 2018 - Updated breast cancer screening guideline highlights importance of shared decision-making
December 11, 2018 - EHR-related stress associated with physician burnout
December 11, 2018 - AHA: 12-Year-Old Heart Defect Survivor Inspires NFL Player’s Foundation
December 11, 2018 - Breast cancer patients who take heart drug with trastuzumab have less heart damage
December 11, 2018 - Providing aid to those humans – and animals – affected by the California fires
December 11, 2018 - Even without proof, CBD is finding a niche as a cure-all
December 11, 2018 - Drawing leads to better memory than writing
December 11, 2018 - Researchers report novel findings on plant hormone
December 10, 2018 - A Tale of Two Labels
December 10, 2018 - Triple combination cancer immunotherapy improves outcomes in preclinical melanoma model
December 10, 2018 - A 14-year-old explains what it’s like to get a new heart
December 10, 2018 - Team Players Honored with 2018 Baton Awards
December 10, 2018 - Global report highlights how the changing world is affecting children’s physical activity levels
December 10, 2018 - Genes play a role in physical activity and sleep
December 10, 2018 - DDT in Alaskan fish shown to increase risk of cancer
December 10, 2018 - Laws to curb use of cell phones have greatly reduced fatalities for motorcyclists
December 10, 2018 - Argenx Provides Detailed Data from Phase 2 Clinical Trial of Efgartigimod in Immune Thrombocytopenia and Phase 1/2 Clinical Trial of Cusatuzumab in Acute Myeloid Leukemia
December 10, 2018 - University of Maryland doctors treat first breast cancer patients with GammaPod radiotherapy
December 10, 2018 - The heartbeat seat: Demoing new well-being technologies in a car
December 10, 2018 - Leading Cancer Researcher to Direct Herbert Irving Comprehensive Cancer Center
December 10, 2018 - Researchers explore how glial cells develop in the brain from neural precursor cells
December 10, 2018 - Study compares pain-related diagnoses in First Nations and non-First Nations children, youth
December 10, 2018 - Experts address sleep disorders following traumatic brain injury
December 10, 2018 - Scientists find answers to how cancer spreads
December 10, 2018 - Study explores why older people read more slowly
December 10, 2018 - Smart life-collar could save lives of young children
December 10, 2018 - Asbestos found in most NHS hospitals finds BBC inquiry
December 10, 2018 - Researchers use new technique to probe hydrogen bonds
December 10, 2018 - Music improves social communication in autistic children
December 10, 2018 - Some Brain Tumors May Respond to Immunotherapy, New Study Suggests
December 10, 2018 - Banning junk food ads to combat childhood obesity
December 10, 2018 - Skin Autofluorescence Predicts T2DM, Heart Disease, Mortality
December 10, 2018 - Largest autism sequencing study to date yields 102 genes associated with ASD
December 10, 2018 - Statins associated with low risk of side effects
December 10, 2018 - Episodic memory tests help in predicting brain atrophy and Alzheimer’s disease
December 10, 2018 - Study explores how schools address adolescent self-harming practices
December 10, 2018 - Pregnancy in adolescence linked to increased risks of complications in young mothers
December 10, 2018 - Risk Analysis publishes special issue on communicating about Zika virus
December 10, 2018 - Botox May Help Prevent Post-Op A-Fib
December 10, 2018 - African-American mothers rate boys higher for ADHD
December 10, 2018 - Graphic warning labels cancel out cigarettes’ appeal to young people
December 10, 2018 - Australian researchers to study gas inhalational anaesthetic and likelihood of cancer return
December 10, 2018 - Individual neurons located within the brain have implications for psychiatric diseases
December 10, 2018 - Researchers improve bariatric surgery scoring system to extend prediction time for diabetic remission
December 10, 2018 - HPV type 16 or 18 associated with cervical cancer risk in young women
December 10, 2018 - Cervical cancer risk is higher in women with positive HPV, but no cellular abnormalities
December 10, 2018 - Combo therapy not needed if low RA disease activity achieved
December 10, 2018 - Novel therapeutic targets based on biology of aging show promise for Alzheimer’s disease
December 10, 2018 - UC San Diego professor receives NCI Outstanding Investigator Award for cancer research
December 10, 2018 - Study evaluates placental mesenchymal stem cell sheets for myocardial repair and regeneration
December 10, 2018 - Blueprint Medicines Announces Updated Results from Ongoing EXPLORER Clinical Trial of Avapritinib Demonstrating Broad Clinical Activity and Significant Symptom Reductions in Patients with Systemic Mastocytosis
December 10, 2018 - Study clarifies ApoE4’s role in dementia
December 10, 2018 - Eating disorders now a top priority with Australian Government
December 10, 2018 - Neuronal activity in the brain allows prediction of risky or safe decisions
December 10, 2018 - FDA Alerts Health Care Professionals and Patients Not to Use Drug Products Intended to be Sterile from Promise Pharmacy
December 10, 2018 - Improving dementia care and treatment saves thousands of pounds in care homes
December 10, 2018 - Heroin-assisted treatment can offer benefits, reduce harms
December 10, 2018 - People covered by Michigan’s expanded Medicaid program report improvements in health, finds study
December 10, 2018 - Hazelnuts improve micronutrient levels in older adults
December 9, 2018 - History of Partner Violence Tied to Menopause Symptoms
December 9, 2018 - Clean Up Safely After a Disaster|Natural Disasters and Severe Weather
December 9, 2018 - Drug wholesalers drove fentanyl’s deadly rise, report concludes
December 9, 2018 - Deprescribing could help manage polypharmacy in older adults
December 9, 2018 - Retraction of article “Joy of cooking too much” from journal
December 9, 2018 - FDA Warns of Rare Stroke Risk With MS Drug Lemtrada (Alemtuzumab)
December 9, 2018 - Feds say heroin, fentanyl remain biggest drug threat to US
December 9, 2018 - Eliminating microglia can reverse some aspects of stress sensitization, study shows
December 9, 2018 - New genetic insight could help treat rare debilitating heart and lung condition
December 9, 2018 - MiRagen Therapeutics Announces Final Safety, Biodistribution and Clinical Efficacy Data From Phase 1 Cobomarsen Clinical Trial in Patients With Mycosis Fungoides
December 9, 2018 - Work with your doctor to weigh pros, cons of treatment options for hyperthyroidism
December 9, 2018 - CWRU researcher secures $14.6 million funding for genetic study into Alzheimer’s disease
December 9, 2018 - High intensity statin treatment and adherence could save more lives
December 9, 2018 - Surgery patients use only 1/4 of prescribed opioids, and prescription size matters
December 9, 2018 - AXT offers Phi Optics upgrade to QPI systems for inverted light microscopes
December 9, 2018 - New booklet could help improve conditions of young pupils with albinism
December 9, 2018 - Few Physicians Work in Practices That Use Telemedicine
December 9, 2018 - Older Adults and Oral Health
December 9, 2018 - Health utility values improve after septorhinoplasty
New machine learning framework predicts effects of genetic mutations in ‘dark matter’ regions

New machine learning framework predicts effects of genetic mutations in ‘dark matter’ regions

image_pdfDownload PDFimage_print

A new machine learning framework, dubbed ExPecto, can predict the effects of genetic mutations in the so-called “dark matter” regions of the human genome. ExPecto pinpoints how specific mutations can disrupt the way genes turn on and off throughout your body. Such disruptions in gene expression can sometimes have fatal consequences.

Using the method, its creators at the Flatiron Institute’s Center for Computational Biology (CCB) in New York City and at Princeton University computed the genetic ramifications of more than 140 million mutations in different tissues. The researchers also precisely pinpointed mutations potentially responsible for increasing the risk of several immune-related diseases, including chronic hepatitis B virus (HBV) infection and Crohn’s disease.

ExPecto could one day aid in the selection of drug therapies and help illuminate how evolution shaped our genetic code,  the researchers report in a study published on July 16 in Nature Genetics.

“ExPecto can examine any genetic variant and predict its effect on gene expression,” says principal investigator Olga Troyanskaya, deputy director of genomics at CCB and a professor at Princeton. “That’s incredibly exciting.”

Your DNA contains genes that serve as blueprints for building proteins, the workhorse molecules of our bodies responsible for carrying out important tasks such as ferrying oxygen, communicating with other cells and fighting infections. Protein-coding sequences make up less than two percent of your whole genome. All of these genes are present in cells throughout your body. This ubiquity means that protein-encoding genes vital to brain function, for instance, also exist in your digestive tract, lying dormant.

Genes are switched on and off by the other 98 percent of your genome, the “dark matter” portion that doesn’t code for proteins. Most genetic mutations are found in this noncoding region. A mutation is essentially a genetic typo — an addition, deletion or alteration in the genomic sequence. Mutations in the noncoding region can sometimes cause genes to express or not express in the wrong part of your body at the wrong time, increasing the risk of diseases such as cancer.

Identifying the specific mutation responsible is difficult because the noncoding portion of DNA is so large. Previous studies compared the genomes of many individuals with a given disease, searching for mutations the individuals had in common. This approach, however, becomes increasingly tricky for rarer mutations. Furthermore, strings of DNA are sometimes inherited in large clusters, so scientists struggle to pinpoint which particular piece of genetic code is the troublemaker.

The study authors took a different approach. They developed ExPecto (named after the Patronus charm from the Harry Potter series) as a program that can read a raw sequence of DNA and predict the corresponding effect on gene expression.

ExPecto harnesses deep learning methods from artificial intelligence. Using a single reference genome, the researchers trained the program to understand how DNA controls gene expression across more than 200 different tissues and cell types. From this information, ExPecto can predict the effect of any mutation, even mutations that scientists have never seen before.

The researchers used ExPecto to predict the mutations that contribute to Crohn’s disease, chronic HBV infection and Behçet’s disease. Study co-author Chandra Theesfeld then experimentally verified the results. For all three diseases, she found that ExPecto’s predicted candidate was a more promising potential contributor to the disease than those proposed by previous studies.

The researchers hope that ExPecto will one day help medical experts identify the genetic contributors to a patient’s disease and develop therapies customized to the patient’s genome. “Once you know which protein is affected and what the protein does, then you can design drugs that can fix the problem,” says study co-author Jian Zhou, a Flatiron research fellow at CCB. For instance, “if you can’t produce a certain protein, then you could design a therapy that makes up for the missing protein.”

Anyone can access ExPecto’s predictions of the effects of more than 140 million possible mutations near protein-encoding genes. These results are available online as part of HumanBase, a data-driven prediction system about human biology and disease developed by the research team. Visitors can type in a gene and see all the potential mutations that could affect that gene’s expression in any of 218 tissues and cell types.

Zhou anticipates that ExPecto will be particularly insightful for studying the evolutionary consequences of mutations. He and his colleagues found, for instance, that mutations were less likely to affect genes expressed throughout the human body than genes specialized for one specific tissue type. “We don’t have a full explanation yet,” he says, but the result could be related to the robustness of more ubiquitous genes. An issue with a body-wide gene can have a higher likelihood of being fatal or otherwise preventing the individual from passing on his or her genetic information. “Evolution has already done the experiments for us,” Zhou says.

Source:

https://www.simonsfoundation.org/2018/07/16/ai-genetic-mutations/

Tagged with:

About author

Related Articles