Breaking News
March 25, 2019 - Trastuzumab Tied to Higher Long-Term Risk for Heart Failure
March 25, 2019 - Personal context directly affects CPAP use
March 25, 2019 - Mosquito tracking key to preventing disease outbreaks
March 25, 2019 - Scientists Detect Hidden Signals from Beneficial Bacteria
March 25, 2019 - Treating women with thyroid antibodies with Levothyroxine do not increase live birth rate
March 25, 2019 - Brain area that only processes spoken, not written words identified
March 25, 2019 - Race and ethnicity influence fracture risk in diabetic patients
March 25, 2019 - Researchers report new regenerative medicine approach for treating osteoarthritis of the knee
March 25, 2019 - Exposure to dim light at night may contribute to spread of breast cancer to bones
March 25, 2019 - Benefits of osteoporosis treatment in postmenopausal women outweigh the perceived risks
March 25, 2019 - Researchers find evidence of Cryptosporidium parasite in Minnesota’s public water systems
March 25, 2019 - Three Clues to Raised Risk of Miscarriage
March 25, 2019 - Structured play helps toddlers self-regulate, altering their life course
March 25, 2019 - Translating horror into justice: Stanford psychiatrist advocates for human rights
March 25, 2019 - HORIBA Medical introduces D-Dimer reagent for Yumizen G hemostasis range
March 25, 2019 - Recurrent pregnancy loss may be caused by sperm DNA damage, finds study
March 25, 2019 - Special Collection tracks development of new diagnostic tests for tuberculosis
March 25, 2019 - Air Force develops genetic test to predict mental performance
March 25, 2019 - To abort or not to abort—making difficult choices alone
March 25, 2019 - Computer vision technology could aid ICU care by spotting movement
March 25, 2019 - IONTAS wins ‘Small Business of the Year’ category at Cambridge News Business Excellence Awards 2019
March 25, 2019 - First postpartum depression drug gets FDA nod
March 25, 2019 - Research Recognition Award will help improve lives of young people with absence epilepsy
March 25, 2019 - Bisphosphonates to treat osteoporosis appears to be beneficial for all women
March 25, 2019 - Dolomite Bio releases new Drop-seq datasets for single-cell RNA sequencing
March 25, 2019 - Hemoglobin A1c blood test may underestimate prevalence of diabetes
March 25, 2019 - Immune system errors linked to development of childhood leukemia
March 25, 2019 - Eating leafy green vegetables may help maintain muscle strength and mobility
March 25, 2019 - BMA secures state-backed clinical negligence indemnity scheme for GP trainees
March 25, 2019 - Biohaven Announces Completion of Pre-NDA Meeting With FDA for Oral CGRP Receptor Antagonist Rimegepant
March 25, 2019 - Adding breakfast to classrooms may have a health downside
March 25, 2019 - She Was Dancing On The Roof And Talking Gibberish. A Special Kind Of ER Helped Her.
March 25, 2019 - KNAUER introduces new Sepapure FPLC columns and media for protein purification tasks
March 25, 2019 - Weight loss in obese migraine sufferers can improve their quality of life
March 25, 2019 - Exposure to particulate air pollution may lead to reduced sperm production
March 25, 2019 - Synthetic peptide appears to disrupt inflammation and protect kidneys from nephritis
March 25, 2019 - New guideline focuses on strategies to improve health of older adults with diabetes
March 25, 2019 - Study evaluates prescribing of preventive drugs at the end of life in older adults with cancer
March 25, 2019 - Radial or femoral approaches for PCI are equal in terms of survival in heart attack patients
March 25, 2019 - Study shows how some autoimmune diseases are more closely related than others
March 25, 2019 - Long term opioid medications impacts production of important hormones
March 25, 2019 - FDA Issues Complete Response Letter for Zynquista (sotagliflozin)
March 25, 2019 - CDC researchers report on trends in hospital breastfeeding policies
March 25, 2019 - States Push For Caregiver Tax Credits
March 25, 2019 - Females on ketogenic diet fail to show metabolic benefits in animal model
March 25, 2019 - Modulating stiffness of blood-forming stem cells could facilitate mobilization procedures
March 25, 2019 - Gene editing regulations to be tightened
March 25, 2019 - CPAP treatment can result in weight loss in people with sleep apnea and obseity
March 25, 2019 - Highly attractive businesswomen are considered less trustworthy ‘femmes fatales’
March 25, 2019 - Breast Density Categorization Varies With Screening Modality
March 25, 2019 - Researchers explore link between metal exposure and Parkinson’s symptoms
March 25, 2019 - Later meal timing may contribute to weight gain
March 25, 2019 - Around one in hundred people has autism spectrum condition in China
March 25, 2019 - Research paves way for new standard of care to improve heart’s pump function
March 25, 2019 - Exposure to HIV virus, antiretroviral therapy before birth linked to obesity and asthma-like symptoms
March 25, 2019 - Transgender men preserve their fertility potential after one year of testosterone therapy
March 25, 2019 - Tighter Blood Pressure Control May Prevent Brain Lesions
March 25, 2019 - A reward now or later? Exploring impulsivity in Parkinson’s disease patients
March 25, 2019 - Financial incentives fail to increase completion rates of colorectal cancer screening tests mailed to patients
March 25, 2019 - New research program launched to highlight sexual harassment in academia
March 25, 2019 - Hemoglobin A1c blood test does not detect diabetes in most patients, shows study
March 25, 2019 - Wyss Technology licensed by Sherlock Biosciences to create affordable molecular diagnostics
March 25, 2019 - DWK Life Sciences launches KIMBLE GLS 80 Media Bottle and Multiport Cap System
March 25, 2019 - New study aims to reduce online sexual exploitation of children
March 25, 2019 - Want healthier eating habits? Start with a workout
March 25, 2019 - New approach to prescribing antibiotics could curb resistance
March 24, 2019 - Theravance Biopharma Announces First Patient Dosed in Phase 2b/3 Study of TD-1473 in Patients with Ulcerative Colitis
March 24, 2019 - Prenatal DHA prevents blood-pressure increase from obesity during childhood
March 24, 2019 - Combined immunosuppression may be effective, safe in treating older patients with Crohn’s disease
March 24, 2019 - GSK sells health drinks arm, buys US cancer treatment firm
March 24, 2019 - Bacteria and innate immune factors in birth canal, cervix may be key to predicting preterm births
March 24, 2019 - IgG antibodies play unexpected role in atherosclerosis
March 24, 2019 - Sounds and vibrations are quite similar for the brain, finds new study
March 24, 2019 - Practices for Reducing COPD Hospital Readmissions Explored
March 24, 2019 - Could an eye doctor diagnose Alzheimer’s before you have symptoms?
March 24, 2019 - Enzyme inhibitor stops inflammation and neurodevelopmental disorders in mouse models
March 24, 2019 - Walk, Dance, Clean: Even a Little Activity Helps You Live Longer
March 24, 2019 - Americans used less eye care in 2014 versus 2008
March 24, 2019 - Study finds link between depression in 20s linked to memory loss in 50s
March 24, 2019 - New tool helps physiotherapy students to master complex fine motor skills
New technique allows researchers to create large scale, personalized bone grafts

New technique allows researchers to create large scale, personalized bone grafts

image_pdfDownload PDFimage_print

Scientists from the New York Stem Cell Foundation (NYSCF) Research Institute have developed a new bone engineering technique called Segmental Additive Tissue Engineering (SATE). The technique, described in a paper published online today in Scientific Reports, allows researchers to combine segments of bone engineered from stem cells to create large scale, personalized grafts that will enhance treatment for those suffering from bone disease or injury through regenerative medicine.

“We are hopeful that SATE will one day be able to improve the lives of the millions of people suffering from bone injury due to trauma, cancer, osteoporosis, osteonecrosis, and other devastating conditions,” says Susan L. Solomon, NYSCF CEO. “Our goal is to help these patients return to normal life, and by leveraging the power of regenerative medicine, SATE brings us one step closer to reaching that goal.”

Over a million individuals per year will suffer from a fracture due to bone disease, and as people age, their bones get weaker, leading to complications later in life. From traumatic injuries due to car accidents, domestic violence, and service in combat to genetic malformation resulting from diseases like osteogenesis imperfecta, the burden of bone deficiencies is massive and rapidly increasing.

“Bone defects obtained in disease or injury are a growing issue, and having effective treatment options in place for personalized relief, no matter the severity of a patient’s condition, is of critical importance,” explains NYSCF – Ralph Lauren Senior Principal Investigator Giuseppe de Peppo, PhD, who led the study.

Bone defects are currently treated with either synthetic substitutes or bone grafts taken from a bone bank or another part of the patient’s body. However, these treatments often spark immune rejection, do not form connective tissue or vasculature needed for functional bone, and can be quickly outgrown by pediatric patients. Bone grafts generated from patient stem cells overcome such limitations, but it is difficult to bioengineer these grafts in the exact size and shape needed to treat large defects.

“As the size of the defect that needs to be replaced gets larger, it becomes harder to reproducibly create a graft that can move from the lab to the clinic,” says NYSCF researcher Dr. Martina Sladkova, the study’s first author. “We wanted to see if we could instead engineer smaller segments of bone individually and then combine them to create a graft that overcomes the current limitations in the size and shape of a bone that can be grown in the lab.”

To explore this question, the team engineered a graft corresponding to a defect in the femur of a rabbit that affected about 30% of the bone’s total volume. They first scanned the femur to assess the size and shape of the defect and generated a model of the graft. They then partitioned the model into smaller segments and created customized scaffolds for each.

The team then placed these scaffolds, fitted with human induced pluripotent stem cell-derived mesodermal progenitor cells, into a bioreactor specially designed to accommodate bone grafts with a broad range of sizes. This bioreactor was able to ensure uniform development of tissue throughout the graft, something that existing versions of bioreactors often struggle to do.

Once the cells integrated and grown within the scaffold, the segments of the bone graft could then be combined into a single, mechanically stable graft using biocompatible bone adhesives or other orthopedic devices.

SATE is standardized, versatile, and easy to implement, allowing for bioengineered bone grafts to more quickly make the leap from bench to bedside, and the researchers are confident in its potential to enable bone graft engineering that will help to improve the quality of life of pediatric and adult patients suffering from segmental bone defects.

Tagged with:

About author

Related Articles