Breaking News
March 20, 2019 - Leaky valve repair improves quality of life in heart failure patients
March 20, 2019 - Diattenuation Imaging offers structural information of difficult to access brain regions
March 20, 2019 - Early sports specialization linked to increased injury rates during athletic career
March 20, 2019 - Study brings clarity about milk intake for children with Duarte galactosemia
March 20, 2019 - Allergan Announces FDA Acceptance of New Drug Application for Ubrogepant for the Acute Treatment of Migraine
March 20, 2019 - Maternal smoking during pregnancy increases risk of ADHD among offspring up to three-fold
March 20, 2019 - Pioneering pediatric kidney transplant surgeon Oscar Salvatierra dies at 83 | News Center
March 20, 2019 - F.D.A. Approves First Drug for Postpartum Depression
March 20, 2019 - TB remains a major public health challenge in the European region
March 20, 2019 - Most pills contain common allergens, warn experts
March 20, 2019 - Researchers discover previously unknown mechanism by which cells can sense oxygen
March 20, 2019 - World’s leading source of data on diagnosis, treatments for aortic dissection
March 20, 2019 - Breast cancer relapse predictor may soon be a reality
March 20, 2019 - Researchers identify origin of chronic pain in humans
March 20, 2019 - Two-drug combinations containing calcium channel blocker significantly lowers BP
March 20, 2019 - King’s scientists to monitor air quality exposure of 250 children
March 20, 2019 - Preventative cardioverter defibrillator implantation is of little benefit to kidney dialysis patients
March 20, 2019 - Merck to collaborate with GenScript for plasmid and virus manufacturing in China
March 20, 2019 - FDA Approves Zulresso (brexanolone) for the Treatment of Postpartum Depression
March 20, 2019 - Study examines long-term opioid use in patients with severe osteoarthritis
March 20, 2019 - Retired Stanford professor Edward Rubenstein, pioneer in intensive care medicine, dies at 94 | News Center
March 20, 2019 - Aaron Diamond AIDS Research Center to Join Columbia University
March 20, 2019 - Call for halt to human gene editing and designer babies experiments
March 20, 2019 - Study illuminates how hot spots of genetic variation evolved in the human genome
March 20, 2019 - Roundworm study suggests alternatives for treatment of schizophrenia
March 20, 2019 - Sphingotec reports new applications of bio-ADM at 39th ISICEM
March 20, 2019 - Preventing falls through free community-based screenings for older adults
March 20, 2019 - AAOS: Supplement Use Low in Patients With Osteoporosis, Hip Fracture
March 20, 2019 - Does intensive blood pressure control reduce dementia?
March 20, 2019 - Nut consumption could be key to better cognitive health in older people
March 20, 2019 - Drinking hot tea associated with increased risk of esophageal cancer
March 20, 2019 - Androgen receptor plays vital role in regulating multiple mitochondrial processes
March 20, 2019 - NIH announces funding boost for Detroit Cardiovascular Training Program
March 20, 2019 - Study reveals another surgical option for patients with irreparable rotator cuff tears
March 20, 2019 - New robot-guided video game may be effective and low-cost solution for caregivers
March 20, 2019 - Heart Attacks Fall By One-Third Among Older Americans
March 20, 2019 - Data sharing uncovers five new risk genes for Alzheimer’s disease
March 20, 2019 - Does It Make Sense To Delay Children’s Vaccines?
March 20, 2019 - Lack of health insurance may increase Aging immigrants’ risk for cardiovascular disease
March 20, 2019 - Piece of puzzle unlocked in what drives alcohol addiction
March 20, 2019 - Researchers investigate whether Zika reservoirs are found in the Americas
March 20, 2019 - Compounds found in coffee may inhibit growth of prostate cancer
March 20, 2019 - Lab Innovations returns to the NEC on 30 & 31 October 2019
March 20, 2019 - How genes affect tobacco and alcohol use
March 20, 2019 - Osteoarthritis and rheumatoid arthritis have similar impacts on patients
March 20, 2019 - Individuals with infection history have higher risk of developing Sjögren’s syndrome
March 20, 2019 - Nursing home residents benefit from individualized multi-component exercise program
March 20, 2019 - Plant cellulose bone implants are “viable” option to support new bone growth, study finds
March 20, 2019 - Older people living in retirement communities benefit from improved health
March 20, 2019 - UTSA professor helps train first responders to detect prescription opioid overdoses
March 20, 2019 - Biohaven’s Verdiperstat Receives Orphan Drug Designation From FDA For Multiple System Atrophy
March 20, 2019 - Smoking may limit body’s ability to fight dangerous form of skin cancer
March 20, 2019 - Researchers receive $9.7-million grant to develop new hearing-loss treatments for deaf
March 20, 2019 - TGen and ABL sign agreement to distribute new TB test technology
March 20, 2019 - UCD researchers lead development of new urine test to detect prostate cancer
March 20, 2019 - Miniature brains that can move muscles, grown in the lab
March 20, 2019 - Servier and Oncodesign announce research and drug development partnership
March 20, 2019 - FDA warns marketer of unapproved products claiming to treat addiction, chronic pain
March 20, 2019 - TB Medicine Pretomanid Enters Regulatory Review Process in the United States
March 20, 2019 - Breastfeeding can erase effects of prenatal violence for newborns
March 20, 2019 - Tens of Thousands of Heart Patients May Not Need Open-Heart Surgery
March 20, 2019 - Space worries – shingles affecting astronauts says NASA
March 20, 2019 - Study shows how AI can improve physicians’ diagnostic accuracy
March 20, 2019 - Dolomite Bio launches new scRNA-Seq Reagent Kit at AGBT 2019
March 20, 2019 - World’s oldest semen viable for artificial insemination
March 20, 2019 - FDA Approves Zulresso (brexanolone) for the Treatment of Post-Partum Depression
March 19, 2019 - How it manipulates us to tribalism
March 19, 2019 - How can doctors encourage patients to adopt healthier behaviors?
March 19, 2019 - Meet Hal: He's One Sick Robot
March 19, 2019 - Blood test and mathematical model can estimate preterm birth rate in low-resource countries
March 19, 2019 - TAVR procedure safe in patients with unusual valve anatomy
March 19, 2019 - Proteins in the eye may be potential source for cost-effective test to predict Alzheimer’s disease
March 19, 2019 - Opioid Prescriptions Dropped for New Users From 2012 to 2017
March 19, 2019 - New method may better predict the best treatment for burn wounds
March 19, 2019 - “Asian” isn’t specific enough for health data, research suggests
March 19, 2019 - ColumbiaDoctors Presents Honors for Outstanding Commitment to Patient Safety
March 19, 2019 - Innovative model identifies primate species with potential to transmit Zika in the Americas
March 19, 2019 - One-off surgery could offer hope to patients with high blood pressure
March 19, 2019 - Many pet owners interested in feeding their pets with plant-based diet
March 19, 2019 - How to Protect Your Kids From Drowning
Watching the immune system in action reveals what happens when things goes wrong

Watching the immune system in action reveals what happens when things goes wrong

image_pdfDownload PDFimage_print
‘Timer’ protein fluorescence across time. Credit: Imperial College London

Scientists are unveiling how our immune system works – and malfunctions – thanks to an innovative technology that tracks immune cells.

The technology has already been used to look at immune cells involved in a mouse model of multiple sclerosis, and could provide valuable insights into autoimmune diseases.

As immune cells travel and work all around the body, they have been incredibly difficult to track and understand in the past. Now, following a five-year study, researchers at Imperial have developed a technology that could change this.

The immune system is vital in human health and wellbeing, with different types of cells continuously roaming our bodies, primed to fight infection. However, the immune system is associated with a number of diseases, termed ‘autoimmune’ diseases where it turns on our body and starts producing a response where it’s not required.

The research, published today in the Journal of Cell Biology, specifically looked at T cells, a key immune cell in the fight to clear infection.

Lead author Dr. Masahiro Ono, a BBSRC fellow from the Department of Life Sciences at Imperial, said: “This new method allows us to identify and analyse the activities of cells inside the body in a systemic manner, giving us a better understanding of how they work over time.”

Seeing infection responses in action

In response to infection, T cells are activated through a marker on their surface known as the T cell receptor (TCR), which is the eyes of the cell. When the TCR ‘sees’ an invading pathogen, it triggers a signal telling the cell to turn, or ‘differentiate’, into a type of T cell able to carry out a specific task in the fight against infection.

Using mice, Dr. Ono and his team were successfully able to characterise how a T cell activates and differentiates over time. This process of differentiation has been previously difficult to characterise due to the very dynamic nature of the process.

The team developed a new technology known as Timer-of-cell-kinetics-and-activity or, ‘Tocky’, after the Japanese word for time, where a fluorescent protein known as Timer is attached to a gene involved in T cell function.

By adding the Timer protein, which changes colour from blue to red as T cells are activated, the team could identify the events going on inside the cell across time as activation occurred, including identifying which signalling pathways were triggered.

Dr. Ono added: “Using this new technology, we were able to understand and correlate events with the passage of time following T cell receptor signalling in vivo. This has been previously very difficult to do.”

Watching when T cells attack

Additionally, the team were able to identify pathogenic (disease-causing) T cells in a mouse model of multiple sclerosis, a disorder where immune cells, including T cells, attack the brain and spinal cord.

As humans we have 100 million T cells in our body at once, making it challenging to look at which T cells carry out specific tasks. However, using this new technology, the team were able to show that pathogenic T cells involved in multiple sclerosis have very unique activities in the brain and spinal cord across time, interacting with specific proteins and being continuously reactivated.

This knowledge could help scientists to further understand the disease and potentially come up with new treatment possibilities in the future.

Additionally, many immunotherapies, used to treat certain cancers for example, target T cells, but how our immune system responds to these therapies can be difficult to predict.

Dr. Ono said: “What I hope is that by improving our understanding of how cells work systemically in the body, we can create a better and even more tailored method to manipulate our immune system for human health benefits.”

The next steps for Dr. Ono and his team will be to try and translate this new technology so it works for other cell types, giving us a deeper understanding of how our cells work systemically around our bodies.


Explore further:
Some blood stem cells are better than others

More information:
‘A timer for analyzing temporally dynamic changes in transcription during differentiation in vivo’ by David Bending, Paz Prieto Martín, Alina Paduraru, Catherine Ducker, Erik Marzaganov, Marie Laviron, Satsuki Kitano, Hitoshi Miyachi, Tessa Crompton, and Masahiro Ono is published in Journal of Cell Biology. doi.org/10.1083/jcb.201711048

Journal reference:
Journal of Cell Biology

Provided by:
Imperial College London

Tagged with:

About author

Related Articles