Breaking News
February 17, 2019 - Support from trusted adults can reduce risk of dying in suicidal teens, finds study
February 17, 2019 - Heart attack awareness improved since 2008
February 17, 2019 - Exercise gives a better brain boost to older men than women
February 17, 2019 - New research disproves previous assumptions of how looks influence personality
February 17, 2019 - Cannabis use as a teenager linked to depression later in life
February 17, 2019 - Sinks by Toilets in ICU Patient Rooms Harbor Harmful Bacteria
February 17, 2019 - Cancer cells’ plasticity makes them harder to stop
February 17, 2019 - Young cannabis users have increased risk of depression and suicidal behavior
February 17, 2019 - Tasmanian Devils Likely to Survive Cancer Scourge
February 17, 2019 - Neoadjuvant PD-1 blockade seems effective in glioblastoma
February 17, 2019 - Personal, social factors play role in enabling sustainable return to work after ill health
February 17, 2019 - Mouse studies show ‘inhibition’ theory of autism wrong
February 17, 2019 - Study shows how neuroactive steroids inhibit activity of pro-inflammatory proteins
February 17, 2019 - Use of liver grafts from older donors decreased despite better outcomes in recipients
February 17, 2019 - MUSC researchers discover new mechanism for a class of anti-cancer drugs
February 17, 2019 - HPV misconceptions are causing women to miss smear tests
February 17, 2019 - Sanofi and Regeneron Offer Praluent (alirocumab) at a New Reduced U.S. List Price
February 17, 2019 - Researchers say auditory testing can identify children for autism screening
February 17, 2019 - New method analyzes how single biological cells react to stressful situations
February 17, 2019 - WVU gynecologic oncologist investigates novel treatment for cervical and vaginal cancers
February 17, 2019 - ADHD diagnoses poorly documented
February 17, 2019 - Majority of gender minority youth do not identify with traditional sexual identity labels
February 17, 2019 - AbbVie, Teneobio enter into strategic transaction to develop potential treatment for multiple myeloma
February 17, 2019 - Lower Birth Weight May Up Risk for Psychiatric Disorders
February 17, 2019 - Scientists identify reversible molecular defect underlying rheumatoid arthritis
February 17, 2019 - Moffitt researchers shed light on how CAR T cells function mechanistically
February 16, 2019 - Female Anatomy May Play Big Role in Sperm’s Success
February 16, 2019 - BMI may mediate inverse link between fiber intake, knee OA
February 16, 2019 - Movement impairments in autism can be reversed through behavioral training
February 16, 2019 - Studies address racial disparities in postpartum period and cardiovascular health
February 16, 2019 - Scientists implicate hidden genes in the severity of autism symptoms
February 16, 2019 - Decreased deep sleep linked to early signs of Alzheimer’s disease
February 16, 2019 - Neuroscientists show how the brain responds to texture
February 16, 2019 - Gilead Announces Topline Data From Phase 3 STELLAR-4 Study of Selonsertib in Compensated Cirrhosis (F4) Due to Nonalcoholic Steatohepatitis (NASH)
February 16, 2019 - What Can I Do About Sweating? (for Teens)
February 16, 2019 - Companies navigate dementia conversations with older workers
February 16, 2019 - Newly developed stem cell technologies show promise for treating PD patients
February 16, 2019 - Collaborative material research could advance self-assembling nanomaterials
February 16, 2019 - Researchers take major step in creating technology that mimics the human brain
February 16, 2019 - Erasing memories associated with cocaine use reduces drug seeking behavior
February 16, 2019 - Artificial intelligence can accurately predict prognosis of ovarian cancer patients
February 16, 2019 - Racial disparities in cancer deaths on the decline for America
February 16, 2019 - FDA authorizes new interoperable insulin pump for children, adults with diabetes
February 16, 2019 - Coexisting Medical Conditions, Smoking Explain PTSD-CVD Link
February 16, 2019 - Skin Cancer Screening: MedlinePlus Lab Test Information
February 16, 2019 - ‘Happiness’ exercises can boost mood in those recovering from substance use disorder
February 16, 2019 - Cell manipulation could soon halt or reverse aging
February 16, 2019 - Pumped Breast Milk Falls Short of Breastfed Version
February 16, 2019 - Men’s porn habits could fuel partners’ eating disorders, study suggests
February 16, 2019 - Rapid progression of age-related diseases may result from formation of vicious cycles
February 16, 2019 - Immune checkpoint molecule protects against future development of cancer
February 16, 2019 - New method produces hydrogels that have properties similar to cells’ environment
February 16, 2019 - $4.1 million funding for heart research on Valentine’s Day
February 16, 2019 - General anesthesia in early infancy unlikely to have lasting effects on developing brains
February 16, 2019 - New breakthroughs for muscular dystrophy research
February 16, 2019 - First Opinion: Embryo editing for higher IQ is a fantasy. Embryo profiling for it is almost here
February 16, 2019 - Vapers develop cancer-related gene deregulation as cigarette smokers
February 16, 2019 - Bringing Antimicrobial Susceptibility Testing (AST) to the Community
February 16, 2019 - Decolonization protocol after hospital discharge can prevent dangerous infections
February 16, 2019 - Children with ASD more likely to face maltreatment, study finds
February 16, 2019 - Study finds genetic vulnerability to use of menthol cigarettes
February 16, 2019 - Promising drug developed to rejuvenate muscle cells
February 16, 2019 - H-RT should be the standard of care for men with low risk prostate cancer, study shows
February 16, 2019 - New technique using patients’ own modified cells could help treat Crohn’s disease
February 16, 2019 - Therapeutic endoscopy has an expanding role in the treatment of IBD
February 16, 2019 - Blood clot discovery could lead to development of better treatments for blood diseases
February 16, 2019 - Intervention can increase exclusive breastfeeding rates
February 16, 2019 - New project explores how gaming technologies can help cancer patients communicate better
February 16, 2019 - Catalyst Biosciences Presents Updated Data from Its Phase 2/3 Trial of Subcutaneous Marzeptacog Alfa (Activated) in Individuals with Hemophilia A or B with Inhibitors at the 12th Annual EAHAD Congress
February 16, 2019 - Rerouting nerves during amputation reduces phantom limb pain before it starts
February 16, 2019 - A Hormone Produced When We Exercise Might Help Fight Alzheimer’s
February 16, 2019 - Millions of British people breathe toxic air travelling to GPs
February 16, 2019 - Conformance of genetic characteristics found to be crucial for longer preservation of kidney graft
February 16, 2019 - Researchers use optogenetic tool to control, visualize receptor signals in neural cells
February 16, 2019 - New reversible antiplatelet therapy could reduce risk of blood clots, prevent cancer metastasis
February 16, 2019 - Testosterone is not the only hormone needed for penis development
February 16, 2019 - FDA Advisory Committee Recommends Approval of Spravato (esketamine) Nasal Spray for Adults with Treatment-Resistant Depression
February 15, 2019 - Heart surgery technology developed at Baptist Health debuts after years of secrecy
February 15, 2019 - Prescription Opioids Double Risk of Triggering Fatal Car Crash
February 15, 2019 - New study helps doctors better understand high blood pressure in pregnant women
INSiGHT identifies unique retinal regulatory genes

INSiGHT identifies unique retinal regulatory genes

image_pdfDownload PDFimage_print
Dr. Melanie Samuel Credit: Baylor College of Medicine

Vision begins in the retina, a light-sensing neural network in the eye that is critical for our ability observe the world around us. Researches at Baylor College of Medicine, Texas Children’s Hospital and the Hospital for Sick Children have developed a new platform that enables them to uncover new regulators of retina neurons. This platform, named INSiGHT, was used to examine more than 100 genes, and 16 key retinal regulatory genes were identified.

Of these genes, 15 have not been previously identified as retinal regulators and nine have been associated with human diseases. The findings, which are published in the journal Cell Reports, contribute to a more complete picture of the genetic factors involved in retinal function in health and disease.

“Unless we can understand the molecular pathways that control neural fate, identity and connectivity, it becomes difficult to prevent or treat visual impairments, which globally affect 253 million people,” said corresponding author Dr. Melanie Samuel, assistant professor of neuroscience and in the Huffington Center on Aging at Baylor College of Medicine.

Motivated by the larger goal of better understanding the molecular control of the nervous system, Samuel and her colleagues focused on the retina.

“We study the retina for many reasons. First, people are visually oriented. In fact, a large part of our brain is dedicated to visual processing,” said Samuel, who also is part of Baylor’s Dan L Duncan Comprehensive Cancer Center. “Second, the retina is a simpler part of the nervous system relative to the brain, making it more tractable to study. In addition, we know a great deal about the retina, including the characteristics of its many neuron types and their basic connectivity. Finally, the retina can provide a window into the brain since molecules and principles that govern one system often also affect the other. “

INSiGHT

In this study, Samuel and her colleagues took an unbiased approach to screen for new genes involved in the normal development of the retina. They partnered with the Knockout Mouse Project at Baylor College of Medicine led by Dr. Arthur Beaudet, professor of molecular and human genetics, and Dr. Mary Dickinson, professor of molecular physiology and biophysics, who are co-authors of the study.

“The project, which is supported by a National Institutes of Health multimillion dollar grant and works in collaboration with the Mary Lyon Centre in Harwell in the U.K., generates mouse strains each lacking a specific gene that has been knocked out or deleted. We also establish the primary characteristics of the knocked out mice as a way to understand how genes work and what functions they are responsible for,” said Dickinson, who also holds the Kyle and Josephine Morrow Endowed Chair at Baylor.

In her lab, Samuel and her colleagues took the work of the Knockout Mouse Project a step further by looking at the role the deleted genes played specifically in the retina. For this, the researchers developed the INSiGHT platform, which stands for the Identification of Neural and Synaptic integrity Genes by High Throughput screening. The system analyzes the expression of the candidate gene and the effect of its deletion on vascular patterning, cellular organization and synaptic arrangement in tissue samples.

The researchers received tissue samples from more than 100 different lines of knockout mice representing about 450 different animals and applied INSiGHT to determine which of those lines may be affected in several features of retina organization. They found 16 unique retinal regulatory genes. Fifteen of them had not been implicated before in aspects of neural development, wiring and vascular patterns that nurture the retina. Importantly, all of these genes have equivalent human genes and nine of them have been previously implicated in human neural disease.

“Of the 16 genes we uncovered, a few caught our attention,” Samuel said. “For instance, animals lacking the gene Slc44a1 show quite dramatic changes in the vasculature patterning in the retina. We are interested in studying this gene further because proper development and maintenance of retinal vascular networks are critical for normal visual function, both in mice and people.”

“This study is particularly exciting because in addition to helping understand the mechanisms underlying eye disease, it will likely provide insights into other neurological or cardiovascular disorders,” Dickinson said. “The eye is really like a little brain but with a built-in window to directly observe the biology. By combining imaging with large scale genetics and cell biological methods, we are beginning to understand gene roles that have not previously been described.”

Now that Samuel and her colleagues have INSiGHT worked out, they plan to expand their screen to look for more genes as well as determine how the genes they have already uncovered function in the retina and the brain.

“Our objective is to contribute to a key goal in the field, which is to map the compendium of genes that regulate the nervous system,” Samuel said.


Explore further:
Researchers reverse congenital blindness in mice

More information:
Cell Reports (2018). DOI: 10.1016/j.celrep.2018.07.090

Journal reference:
Cell Reports

Provided by:
Baylor College of Medicine

Tagged with:

About author

Related Articles