Breaking News
October 19, 2018 - Bariatric Sx Cuts Macrovascular Complications in Obesity, T2DM
October 19, 2018 - Better assessments for early age-related macular degeneration
October 19, 2018 - Visible and valued: Stanford Medicine’s first-ever LGBTQ+ Forum | News Center
October 19, 2018 - Understanding of metal-free enzymes used by bacteria could lead to new effective antibiotics
October 19, 2018 - Beckman Coulter Life Sciences announces new research-focused website
October 19, 2018 - Study finds link between refined soluble fibers, gut microbiota and liver cancer
October 19, 2018 - Social media reduces risk of depression among seniors with pain
October 19, 2018 - Newly developed synthetic DNA molecule may one day be used as ‘vaccine’ for prostate cancer
October 19, 2018 - Preoperative weight loss may not provide health benefits after surgery
October 19, 2018 - U.S. Birth Rates Continue to Drop as Age of New Moms Rises
October 19, 2018 - New technology can keep an eye on babies’ movements in the womb
October 19, 2018 - Juul e-cigarettes pose addiction risk for young users | News Center
October 19, 2018 - Gene sequencing reveals crucial molecular aspects of Trypanosoma brucei
October 19, 2018 - New DNA vaccine strategy protects mice against lethal challenge by multiple H3N2 viruses
October 19, 2018 - Study shows close link between cytokine interleukin-1ß and obesity-promoted colon cancer
October 19, 2018 - Muscle mass plays a critical role in health, shows research
October 19, 2018 - Study finds undiagnosed prediabetes in many infertile men
October 19, 2018 - The Current issue of “The view from here” is concerned with Nanotherapeutic strategies
October 19, 2018 - Delay in replacing the Pap smear with HPV screening is costing lives
October 19, 2018 - Physicians battle pediatric diseases of ear, nose, throat in Zimbabwe | News Center
October 19, 2018 - Researchers investigate why some cancers affect only young women
October 19, 2018 - Drugmakers funnel millions to lawmakers; a few dozen get $100,000-plus
October 19, 2018 - Unselfish people tend to have more children and receive higher salaries
October 19, 2018 - New findings reveal potential cellular players in tumor microenvironment
October 19, 2018 - Human brain cell transplant offers insights into neurological conditions
October 19, 2018 - Parental education associated with increased family health care spending
October 19, 2018 - New statistical method estimates long- and short-term risk of recurrence of breast cancer in US women
October 19, 2018 - Father’s exposure to nicotine may cause cognitive deficits in descendants
October 19, 2018 - Could we prevent Alzheimer’s disease by treating herpes?
October 19, 2018 - Nurse-led care can be more successful in managing gout
October 19, 2018 - Trump administration, pharma exchange verbal volleys on drug-price transparency
October 19, 2018 - Duke researchers find way to detect blood doping in athletes
October 19, 2018 - Many primary care doctors are still prescribing sedative drugs for older adults
October 19, 2018 - Finger length can predict sexuality in women say researchers
October 19, 2018 - Study finds differences in side-effects experienced by male and female OG cancer patients
October 19, 2018 - Few Seniors Who Self-Harm Referred for Mental Health Care
October 19, 2018 - Don’t sweat the sweet stuff
October 19, 2018 - URMC researchers discover new approach to deliver therapeutics to the brain
October 19, 2018 - Middlemen suppliers can increase drug prices and hospital bills, say Johns Hopkins researchers
October 19, 2018 - Survey finds high prevalence of HTLV-1 infection among teens and adults in Gabon
October 19, 2018 - Bliss funds research to find whether parental touch can help alleviate pain in premature infants
October 19, 2018 - Human neurons employ highly compartmentalized signaling, study shows
October 19, 2018 - Ultromics expands multiple clinical trials for coronary heart disease to the U.S.
October 19, 2018 - $11 million NIH grant for Clemson University helps launch new center for musculoskeletal research
October 19, 2018 - A new approach identified to control Zika virus, dengue fever
October 19, 2018 - Head Blows Without Concussion May Not Damage Brain, Study Claims
October 19, 2018 - US opioid use not declined, despite focus on abuse and awareness of risk
October 19, 2018 - Next-generation RNA sequencing technology sheds new light on human mitochondrial diseases
October 19, 2018 - UT Southwestern biochemist receives 2019 Breakthrough Prize in Life Sciences for innate immunity discovery
October 19, 2018 - The immune system also plays a key role in day-to-day function of healthy organs
October 19, 2018 - New tool may reveal how the brain structure impacts brain activity, human behavior
October 19, 2018 - Trump Administration announces ‘Winning on Reducing Food Waste’ initiative
October 19, 2018 - For-profit nursing home residents more likely to experience health issues caused by substandard care
October 19, 2018 - Incidence of stroke has risen steadily among marijuana users, show studies
October 19, 2018 - Conceptual framework proposed to examine role of exercise in multiple sclerosis
October 19, 2018 - Near infrared spectroscopy technique for accurate evaluation of chondral injuries
October 19, 2018 - Scientists receive $5.1 million grant to develop stem cell-based therapy for blinding retinal conditions
October 19, 2018 - Shorter physician encounters associated with antibiotic prescribing
October 19, 2018 - In the Spotlight: Enjoying research and exploring opportunities
October 19, 2018 - Physical activity lowers cardiovascular mortality risk in frail older adults
October 19, 2018 - New imaging tool helps visualize how sound-induced vibrations travel through the ear
October 19, 2018 - Key insights into the application, production of bioactive materials
October 19, 2018 - New urea sorbent could speed up the development of wearable artificial kidney
October 19, 2018 - Intensive care patients’ muscles less able to use fats for energy
October 19, 2018 - FDA Advisory Committee Recommends Approval of Dsuvia for the Treatment of Moderate-to-Severe Acute Pain
October 19, 2018 - 48,XXXY syndrome – Genetics Home Reference
October 19, 2018 - Physical exercise improves the elimination of toxic proteins from muscles
October 19, 2018 - How a new system improved wait times for Stanford kidney transplant patients
October 19, 2018 - Nutrition has bigger positive impact on bone mass and strength than exercise
October 19, 2018 - Study finds lack of progress in media representation of nurses over last 20 years
October 19, 2018 - Many people have trouble understanding differences between OCD and OCPD
October 19, 2018 - New family planning app found to be as effective as modern methods
October 19, 2018 - Gastric Banding, Metformin Similar for Improving Glycemia
October 19, 2018 - Physiologist publishes findings on the role of the protein titin in muscle contraction
October 19, 2018 - What digital health companies need to do to succeed
October 19, 2018 - N. Carolina Sees Alarming Spike in Heart Infections Among Opioid Users
October 19, 2018 - Video monitoring of TB therapy works well in urban and rural areas
October 19, 2018 - Determining acid-neutralizing capacity for OTC antacids
October 19, 2018 - Males who spend more time taking care of kids have greater reproductive success
October 18, 2018 - Study to explore bioethics of brain organoids
Penn researchers find common thread linking almost all TNR expansion diseases

Penn researchers find common thread linking almost all TNR expansion diseases

image_pdfDownload PDFimage_print

In a class of roughly 30 neurological disorders that includes ALS, Huntington’s Disease and Fragile X Syndrome, the relevant mutant gene features sections of repeating base pair sequences known as short tandem repeats, or STRs. Healthy people have STRs of normal lengths distributed across their DNA. For people with trinucleotide repeat (TNR) expansion diseases, however, the STRs in the mutant genes are unstable: the number of repetitions expand into ultra-long lengths that are related to the disease’s pathology.

Researchers at the University of Pennsylvania have found another common thread linking nearly all of the TNR expansion diseases: the complicated 3D patterns that the DNA is folded into in order to fit in the nucleus of the cell. They found that nearly all of the STRs known to grow unstable in disease are located at the boundaries that separate neighboring folded domains.

The researchers also created high-resolution genome folding maps around the FMR1 gene in patients with Fragile X Syndrome and in healthy individuals. They found that the 3D genome was misfolded in disease; the boundary was destroyed around FMR1 in all Fragile X patients who also had pathologic STR expansion and FMR1 silencing.

The findings establish a strong correlation between 3D genome misfolding, short tandem repeat instability, and pathologic gene disruption in these deadly and debilitating diseases, suggesting new research questions whose answers could improve diagnosis or treatment.

The research was led by Jennifer E. Phillips-Cremins, assistant professor in Penn Engineering’s Department of Bioengineering and in the Perelman School of Medicine’s Department of Genetics, along with James Sun and Linda Zhou, members of her lab.

Their study was published in the journal Cell.

At the core of the mystery behind TNR diseases is what causes their repeating sequences to pathologically expand. The same exact repeating patterns appear in hundreds of thousands of other locations along the linear genome, in genes and non-coding regions alike, but are not known to become unstable.

“I wanted to work on this project because I was fascinated by the idea that 3D genome folding?–?something I had barely even heard of before joining the Cremins lab?–?could be the missing piece to understanding why certain parts of the genome behave the way they do,” Zhou says. “In this case, why can repetitive DNA in certain genes become unstable while others do not?”

Mapping the DNA’s 3D folding patterns has only recently become possible, so the genes related to TNR diseases have predominantly been studied via their linear sequences.

The researchers’ findings were enabled by the Cremins Lab’s technique for producing genome folding maps. By fixing the DNA such that its 3D folding patterns are preserved prior to sequencing, two distant parts of the linear sequence will end up in the same string of hybrid DNA and will thus be detected together when the DNA is sequenced. Statistically mapping these associations provides a high-definition picture of which disparate parts of a linear sequence are in physical contact?–?and thus can affect one another’s gene expression?–?when the genome is in its folded state.

Zoomed out, this map looks like a line of densely packed cities, set off from one another by stretches of highway. Each of these “cities” is a topologically associated domain, or TAD, and contains sequences that are in physical contact with one another. The highways between the cities are known as boundaries; they contain linker sequences that physically prevent neighboring TADs from interacting with one another.

In trying to determine what makes the unstable repeats associated with TNR diseases different from their stable counterparts, the researchers considered whether their location with respect to genome folding patterns played a role.

“Every human individual has hundreds of thousands of short tandem repeat tracts distributed throughout their genome. The repeats exhibit wide variation in sequence, location in the gene body, normal and mutation length ranges, the cell types they affect and the phenotypes they produce,” Phillips-Cremins says. “But, for the handful of short tandem repeat tracts known to grow unstable in disease, nearly all are localized specifically to genome folding boundaries.”

The strength of this correlation immediately raised questions of causality for the researchers: do boundaries provide a local environment where the genome is susceptible to repeats, or do the repeats determine the location of a boundary in some way?

“Recent studies have provided strong evidence that the 3D genome can be misfolded in specific cancers and disorders of limb development,” Phillips-Cremins says. “As we initiated our studies to understand the cause-and-effect relationship between boundary placement and repeat expansion, we also began to wonder if we would observe topological changes in TNR diseases or if the boundaries remained intact at the locations of repeat instability.”

Collaborating with Beverly Davidson of the Children’s Hospital of Philadelphia and Flora Tassone of UC Davis, Phillips-Cremins and her co-authors studied brain tissue and B cells donated from patients with Fragile X syndrome and compared them to cells donated by their healthy siblings.

“We discovered that in Fragile X Syndrome, the leading cause of intellectual disability in the United States, the DNA is misfolded at precisely the same location where the genetic defect and pathogenic gene silencing occurs,” Sun says. “This finding raises the profile of many important questions about the relationship between genome folding, repeat expansion, and gene silencing, which we hope will one day lead to insights that might inspire therapeutic options for children affected with the disease.”

That the boundary home to the Fragile X gene is destroyed is highly suggestive that this change is related to the disease’s gene silencing. Questions of causality will need to be addressed before researchers fully understand folding’s role. The recently developed gene editing technology CRISPR/Cas9 will enable Phillips-Cremins and her colleagues to conduct experiments that explore the potential causal role of the 3D genome in repeat expansion.

“We’re tremendously excited to examine whether and how the 3D genome misfolding in Fragile X syndrome is causally linked to the silencing of gene expression in this disease. In our ongoing studies, we want to determine if gene silencing disrupts the boundary, or if boundary disruption silences the gene,” Phillips-Cremins says. “Mechanistic studies have predominantly focused on the linear DNA thus far, but we can now add a new third dimension to understanding the genetic underpinnings of TNR diseases.”

Source:

https://medium.com/penn-engineering/penn-researchers-discover-that-class-of-neurological-disorders-share-common-3d-genome-folding-4307f984a2ca

Tagged with:

About author

Related Articles