Breaking News
October 15, 2018 - Research reveals how the inner ear processes speech
October 15, 2018 - Many parents still skeptical about safety and effectiveness of flu shot, survey finds
October 15, 2018 - Payer Policies May Discourage Non-Pharma Tx for Low Back Pain
October 15, 2018 - Exercise may delay cognitive decline in people with rare Alzheimer’s disease
October 15, 2018 - Researchers modify CRISPR to reorganize genome | News Center
October 15, 2018 - Innovative brain tumor operation set to tailor to patients’ needs
October 15, 2018 - Findings offer new insight into early changes that occur during AD pathology
October 15, 2018 - Neurons regulating reproductive hormone release have different activity in epileptic mice
October 15, 2018 - More parents are concerned about taking babies swimming in public pools
October 15, 2018 - Health Tip: Know the Risk Factors for Lower Back Pain
October 15, 2018 - Study shows cigarillo flavors enhanced by high-intensity sweeteners
October 15, 2018 - Study traces hospital-acquired bloodstream infections to patients’ own bodies | News Center
October 15, 2018 - Abnormal vision in childhood can affect development of brain areas responsible for attention
October 15, 2018 - Color-changing contact lens could help doctors to monitor eye disease medications
October 15, 2018 - Tobacco heating products cause less staining to teeth than conventional cigarettes
October 15, 2018 - Young adults who are obese can expect to lose up to 10 years in life expectancy
October 15, 2018 - Scientists uncover how proteins meet on the cell membrane
October 15, 2018 - Affordable housing with supportive social services for senior citizens can reduce hospital use
October 15, 2018 - The latest ECG device from Schiller
October 15, 2018 - Following a Tissue Sample
October 15, 2018 - Prisoners need drug and alcohol treatments but AA programs aren’t the answer
October 15, 2018 - Andrea Califano and Jordan Orange Elected to National Academy of Medicine
October 15, 2018 - The impending risk of African Swine Fever Virus
October 15, 2018 - Breastfeeding reduces the number of antibiotic-resistant bacteria in infant gut
October 15, 2018 - Researchers develop comprehensive molecular atlas of postnatal mouse heart development
October 15, 2018 - ObsEva SA Presents Clinical Data from Phase III IMPLANT 2 Trial of Nolasiban in IVF at the American Society of Reproductive Medicine (ASRM) Annual Meeting
October 15, 2018 - Engineering teratoma-derived fibroblasts to enhance osteogenesis
October 15, 2018 - Lab study shows effectiveness of potential therapy for treatment-resistant hypothyroidism
October 15, 2018 - JCU study firms up association between diet and depression
October 15, 2018 - Researchers to study the use of CRISPR on human liver on-a-chip platform
October 15, 2018 - Sub-concussive impacts not associated with decline in neurocognitive function
October 15, 2018 - Researchers find potential treatment to halt premature labor and birth
October 15, 2018 - As U.S. suicides rates rise, Hispanics show relative immunity
October 15, 2018 - FDA Issues a Complete Response Letter to Acacia Pharma for Barhemsys
October 15, 2018 - Photoactive bacteria bait may help in fight against MRSA infections
October 15, 2018 - Increasing vigorous exercise reduces risk factors of type 2 diabetes, cardiovascular disease in children
October 15, 2018 - First-of-its-kind study to test a personalized vaccine in cancer patient
October 15, 2018 - Extension trial assesses benefit of switching from flash monitoring to RT-CGM for hypoglycemia
October 15, 2018 - Half of parents say young children are afraid of doctor’s visits
October 15, 2018 - Study shows how fingerprint-based drug screening works on the living and deceased
October 15, 2018 - Study reveals potential to monitor progression of Alzheimer’s disease by measuring brain antioxidant levels
October 15, 2018 - FDA Approves Xarelto to Reduce the Risk of Major Cardiovascular Events in Patients with Chronic Coronary Artery Disease (CAD) or Peripheral Artery Disease (PAD)
October 15, 2018 - Promising new therapeutic approach against Ebola virus identified
October 15, 2018 - Study unravels how cancer stem cells use normal genes in abnormal ways
October 15, 2018 - Healthcare systems fail to deliver at affordable prices finds report
October 15, 2018 - Intensive BP Therapy in Diabetes May Lower Risk for CV Events
October 15, 2018 - Muscle relaxants increase risk of respiratory complications
October 15, 2018 - Female birds become more promiscuous after hatchings fail in the first breeding attempt
October 15, 2018 - Humans occupied Madagascar thousands of years later than previously thought
October 15, 2018 - Is Kidney Dialysis Always Needed When Septic Shock Strikes?
October 15, 2018 - Study shows invasive lung cancer surgery can lead to long-term opioid use
October 15, 2018 - Sugar, a “sweet” tool to understand brain injuries
October 14, 2018 - King’s commemorates activities and research on World Arthritis Day
October 14, 2018 - Humana and VFW NY team up on Stop 22 initiative to increase awareness of veterans committing suicide
October 14, 2018 - Water fluoridation contributes to urinary fluoride levels in pregnant women in Canada
October 14, 2018 - Study of children in Romanian orphanages tells cautionary tale about family separation
October 14, 2018 - Previous Endologix AFX Safety Notice classified by FDA as Class I recall
October 14, 2018 - Legal scholars sound alarm on academies’ report about returning research results to participants
October 14, 2018 - UNIST selects six extraordinary scholars to be induced as ‘Rising-star Distinguished Professor’
October 14, 2018 - Scientists find new way to help asthmatics breathe more easily
October 14, 2018 - New ‘gag rule’ may adversely impact health care of pregnant women
October 14, 2018 - Rosacea – Genetics Home Reference
October 14, 2018 - When the fighting crosses the line
October 14, 2018 - New findings could benefit patients with triple-negative breast cancer
October 14, 2018 - UK Biobank provides wealth of information for further genetic studies
October 14, 2018 - KHN’s ‘What the Health?’ Falling premiums and rising political tensions
October 14, 2018 - Duvelisib Promising for Chronic Lymphocytic Leukemia, SLL
October 14, 2018 - Tailored drug cocktails offer hope to kids with aggressive brain tumors
October 14, 2018 - Common gene variants linked to migraine risk in African-American children
October 14, 2018 - Funding requests are being accepted by BlueCross BlueShield of Tennessee Community Trust
October 14, 2018 - Using pulsed electric fields in cancer therapy
October 14, 2018 - Major Childbirth Complications More Likely for Black Women
October 14, 2018 - Young cancer survivors at greater risk of mental health disorders
October 14, 2018 - Common herbicide compound could help fight hospital-acquired fungal infections
October 14, 2018 - Alterations in genes encoding proteins contribute to ADHD development
October 14, 2018 - New patient-centric website launched in Europe to empower people with chronic conditions
October 14, 2018 - Antimicrobial signaling molecule has lower activity against hepatitis C virus in most humans
October 14, 2018 - Genomic dark matter activity connects Parkinson’s and psychiatric diseases
October 14, 2018 - Cornell dots equipped with antibody fragments offer a new cancer weapon
October 14, 2018 - Addressing social and cultural factors is key to reducing burden of type 2 diabetes
Molecule research reveals potential drug target for treating stroke patients

Molecule research reveals potential drug target for treating stroke patients

image_pdfDownload PDFimage_print

In an extension of research published a month ago in Nature Methods, a novel hybrid approach performed by researchers from Clemson University’s department of physics and astronomy and Stony Brook University has revealed a 3-D structure of a protein fragment that could serve as a drug target in treating stroke patients.

The protein called “postsynaptic density protein of 95 kDa (PSD-95)” is positioned on neurons in the brain that are receiving chemical messages – neurotransmitters – from adjacent neurons. By recruiting receptors and other helper proteins, PSD-95 works to maintain the integrity of neural connections over time, thereby facilitating neural communication, learning and memory.

PSD-95 consists of five parts, or domains, that each play a different role in the protein’s overall function. Two of these domains, called PDZ-1 and PDZ-2, have been shown to influence symptoms associated with ischemic stroke, such as paralysis or speech impairment.

“One of the ideas that has been postulated in the literature is to create a multivalent drug that targets both PDZ domains because they’re very similar in nature. If you can block the PDZ domains from binding particular proteins or enzymes, you can reduce the debilitating effects of a stroke,” said Hugo Sanabria, lead author on the study.

The challenge, however, is that it’s nearly impossible to design a drug inhibitor without first knowing the exact structure of the PDZ domains of PSD-95. It would be like driving across the country without having a map of the United States.

“The biological functions of biomolecules are determined by their structures, so we need detailed structural and dynamic insights of PDZ-1 and -2 to help better understand their functional roles and aid in the design of novel inhibitors,” said Feng Ding, Sanabria’s colleague here at Clemson.

A handful of approaches exists to render the structure of biomolecules. But in the case of PSD-95, each approach – NMR spectroscopy, X-ray crystallography and Förster resonance energy transfer (FRET) – delivered a different structural model. The researchers’ collaborator at Stony Brook University, associate professor Mark Bowen in the department of physiology and biophysics, established a partnership with Sanabria on this project after he uncovered one of the inconsistent structural models of the PSD-95 fragment.

Sanabria’s lab addressed this discrepancy by first modeling the PSD-95 fragment using FRET, an approach that identifies possible configurations of biomolecules. Under this method, Sanabria attached two light-sensitive molecules, called chromophores, at two differing positions on the PSD-95 fragment. He then uncovered the distance between the chromophores by visualizing the fragment under a microscope. This was repeated multiple times from different attaching points.

“For the modeling aspect, FRET gives you distances between chromophores, but that’s not enough to fill all of the geometrical restraints of the molecule, so we have to rely on something else, some other methodology. That’s where Professor Ding comes into play,” Sanabria said.

Ding leads a computational biophysics lab at Clemson University where he uses computer software to gauge how biomolecules look, move and function. His approach to modeling utilizes a computer simulation known as discrete molecular dynamics (DMD) that maps the landscape of a biomolecule, predicting the trajectories of proteins as they fold and interact with other molecules. The subsequent simulation can be played back like a movie, helping researchers visualize protein behaviors over time.

“If you do traditional molecular simulations, typically you’re going to sample a very tiny region of the space, particularly for larger molecules, so you’re not going to have a good overview of how the entire molecule will look even in physiological conditions,” Sanabria said. “Discrete molecular dynamics is a much faster and less computationally expensive way to accurately and rapidly sample the conformational space of proteins.”

To do it, Sanabria first obtained a set of distances by measuring PSD-95 with FRET. In that experiment, Sanabria had 10 samples of the PSD-95 fragment that each were rendering different distances and three common shapes – or conformations – of PSD-95 were observed. Yet, without a DMD simulation, there was no way for the researchers to know which distance corresponded to which conformation of the fragment. So they input each possible distance against each possible shape and let the simulation do the rest.

“Once we did the first simulation, we saw that there were three main states that PDZ-1 and -2 were taking. One showed very close contact between the two, one showed a set of intermediate contact and one had no contact whatsoever,” Ding said.

The researchers then ran a DMD simulation again without considering the FRET distances to confirm that the three observed states exist in nature and are not simply a fluke imposed by the FRET distances. They further probed the structures by looking at the way that individual amino acids, which constitute the PDZ domains, bond to one another. From these analyses, Ding, Bowen and Sanabria were able to confirm that the PDZ domains take on two out of the three observed states in the DMD simulation – that with some contact and that with no contact whatsoever.

“Now, we have two potential targets for engineering new drugs that will be more efficient than the ones that are currently available,” Sanabria said. “The outlook for stroke patients is promising.”

Without discrete molecular dynamics, which can capture conformational changes that occur on the microsecond timescale, these two states would have been missed as they were in past studies.

“Most of the people doing FRET-guided structural modeling are working with a rigid molecule, like DNA. If you have a rigid molecule, it’s easy to model – you have only a single state to capture. You can assign the FRET distances and there’s really no problem,” Sanabria said. “In this case, we surpassed this approach in many ways.”

In future studies, the team is looking to analyze the potential for the PSD-95 fragment to auto-inhibit itself based on the fragment’s own structure.

Source:

http://newsstand.clemson.edu/mediarelations/molecule-studies-reveal-potential-treatment-for-stroke-patients/

Tagged with:

About author

Related Articles