Breaking News
December 14, 2018 - Researchers develop biotechnological tool to produce antifungal proteins in plants
December 14, 2018 - 3D-printed adaptive aids can benefit patients with arthritis
December 14, 2018 - Chronic bullying during adolescence impacts mental health
December 14, 2018 - Integral Molecular and Merus collaborate to develop bispecific antibody therapeutics
December 13, 2018 - Importance of cell cycle and cellular senescence in the placenta discovered
December 13, 2018 - Gold “nanoprisms” open new window into vessels and single cells
December 13, 2018 - Research findings could lead to new targets for cancer-fighting therapeutics
December 13, 2018 - Butantan Institute signs collaboration agreement with MSD to develop dengue vaccines
December 13, 2018 - Study explores how patients want to discuss symptoms with doctors
December 13, 2018 - RUDN medics first to gather scattered data on hepatitis morbidity in Somalia
December 13, 2018 - Age and gender disparities found in use of bed nets to prevent malaria in sub-Saharan Africa
December 13, 2018 - Caffeine therapy benefits developing brains of premature babies
December 13, 2018 - New review focuses on electrospinning techniques used in musculoskeletal tissue engineering
December 13, 2018 - A new division focused on human immune system
December 13, 2018 - Zogenix Announces Positive Phase 3 Trial Results on the Efficacy and Safety of Fintepla (ZX008) in Dravet Syndrome
December 13, 2018 - BCR ABL Genetic Test: MedlinePlus Lab Test Information
December 13, 2018 - Caffeinated beverages during pregnancy linked to lower birth weight babies
December 13, 2018 - Stanford Medicine Health Trends Report examines opportunity to democratize health care
December 13, 2018 - Obsessive-compulsive disorder may protect individuals from obesity
December 13, 2018 - Scientists investigate how a painful event is processed in the brain
December 13, 2018 - Genetic study reveals new insights into underlying causes of moderate-to-severe asthma
December 13, 2018 - Vitamin C supplementation for pregnant smokers may reduce harm to infants’ lungs
December 13, 2018 - New study reveals yin-yang personality of dopamine
December 13, 2018 - Research identifies nerve-signaling pathway behind sustained pain after injury
December 13, 2018 - Children with high levels of callous traits show widespread differences in brain structure
December 13, 2018 - Long-term Benefit of Steroid Injections for Knee Osteoarthritis Challenged
December 13, 2018 - Adding new channels to the brain remote control
December 13, 2018 - In the Spotlight: A different side of neuroscience
December 13, 2018 - Medical Marvels: Using immunotherapy for melanoma that spread to the brain
December 13, 2018 - Puzzles do not keep dementia away finds study
December 13, 2018 - New mouse model shows potential for rapid identification of promising muscular dystrophy therapies
December 13, 2018 - Study reveals urban and rural differences in prenatal exposure to essential and toxic elements
December 13, 2018 - New collaborative partnership in quest of novel antibiotics
December 13, 2018 - Single tau molecule holds clues to help diagnose neurodegeneration in its earliest stages
December 13, 2018 - AHA Scientific Statement: Low Risk of Side Effects for Statins
December 13, 2018 - What Is Acute Flaccid Myelitis?
December 13, 2018 - How bereaved people control their thoughts without knowing it
December 13, 2018 - Health care democratization underway, according to 2nd annual Stanford Medicine Health Trends Report | News Center
December 13, 2018 - Going Beyond a Single Color
December 13, 2018 - London-based startup launches ‘thedrug.store’ aiming to clean up CBD industry
December 13, 2018 - Loss of tight junction barrier protein results in gastric cancer development
December 13, 2018 - Novel way to efficiently deliver anti-parasitic medicines
December 13, 2018 - RKI publishes new data on disease prevention and utilization of medical services
December 13, 2018 - High-tech, flexible patches sewn into clothes could help to stay warm
December 13, 2018 - The CCA releases three reports on requests for medical assistance in dying
December 13, 2018 - Restoring Hair Growth on Scarred Skin? Mouse Study Could Show the Way
December 13, 2018 - Probiotic use may reduce antibiotic prescriptions, researchers say
December 13, 2018 - Drug repositioning strategy identifies potential new treatments for epilepsy
December 13, 2018 - Chronic rhinitis associated with hospital readmissions for asthma and COPD patients
December 13, 2018 - Food poisoning discovery could save lives
December 13, 2018 - Cloned antibodies show potential to treat, diagnose life-threatening fungal infections
December 13, 2018 - Exercise may reduce colorectal cancer risk after weight loss
December 13, 2018 - Russian scientists create hardware-information system for brain disorders treatment
December 13, 2018 - Moderate alcohol consumption linked with lower risk of hospitalization
December 13, 2018 - Nurturing Healthy Neighborhoods | NIH News in Health
December 13, 2018 - Rise in meth and opioid use during pregnancy
December 13, 2018 - Researchers gain new insights into pediatric tumors
December 13, 2018 - FSU study finds racial disparity among adolescents receiving flu vaccine
December 13, 2018 - Study investigates attitudes toward implementation of ‘sex as a biological variable’ policy
December 13, 2018 - Drug cocktail induces cancer cell death by switching off energy supply
December 13, 2018 - Baculovirus virion completely eliminates liver-stage parasites in mouse model
December 13, 2018 - Researchers create noninvasive technology that detects when nerve cells fire
December 13, 2018 - Allen Institute for Immunology to partner with CU Anschutz to understand dynamics of human immune system
December 13, 2018 - Inability to do daily living tasks delays discharge of mental health patients
December 13, 2018 - Treating patients with hypertension induced albuminuria
December 13, 2018 - New substance could improve efficacy of established breast cancer treatments
December 13, 2018 - Scientists develop new stem cell line to study conversion of stem cells into muscle
December 13, 2018 - Re-programming the body’s energy pathway boosts kidney self-repair
December 13, 2018 - Research findings could help improve treatment of anxiety and post-traumatic stress disorders
December 13, 2018 - The Microbiome Movement announce Microbiotica as official industry partner
December 13, 2018 - New study reveals potential benefits of cEEG monitoring for infant ICU patients
December 13, 2018 - Whole-body imaging PET/MRI offers information to guide treatment options for prostate cancer
December 13, 2018 - International investigators fight against the negative campaign on benzodiazepines
December 13, 2018 - Targeting biochemical pathway may lead to new therapies for alleviating symptoms of anxiety disorders
December 13, 2018 - FDA Approves Tolsura (SUBA®-itraconazole capsules) for the Treatment of Certain Fungal Infections
December 13, 2018 - Are scientists studying the wrong kind of mice?
December 13, 2018 - Computer memory: A scientific team builds a virtual model of a key brain region
December 13, 2018 - Visual inspection alone is insufficient to diagnose skin cancer
December 13, 2018 - Paternal grandfather’s access to food associated with grandson’s mortality risk
December 13, 2018 - Our brain senses angry voices in a flash, study shows
Molecule research reveals potential drug target for treating stroke patients

Molecule research reveals potential drug target for treating stroke patients

image_pdfDownload PDFimage_print

In an extension of research published a month ago in Nature Methods, a novel hybrid approach performed by researchers from Clemson University’s department of physics and astronomy and Stony Brook University has revealed a 3-D structure of a protein fragment that could serve as a drug target in treating stroke patients.

The protein called “postsynaptic density protein of 95 kDa (PSD-95)” is positioned on neurons in the brain that are receiving chemical messages – neurotransmitters – from adjacent neurons. By recruiting receptors and other helper proteins, PSD-95 works to maintain the integrity of neural connections over time, thereby facilitating neural communication, learning and memory.

PSD-95 consists of five parts, or domains, that each play a different role in the protein’s overall function. Two of these domains, called PDZ-1 and PDZ-2, have been shown to influence symptoms associated with ischemic stroke, such as paralysis or speech impairment.

“One of the ideas that has been postulated in the literature is to create a multivalent drug that targets both PDZ domains because they’re very similar in nature. If you can block the PDZ domains from binding particular proteins or enzymes, you can reduce the debilitating effects of a stroke,” said Hugo Sanabria, lead author on the study.

The challenge, however, is that it’s nearly impossible to design a drug inhibitor without first knowing the exact structure of the PDZ domains of PSD-95. It would be like driving across the country without having a map of the United States.

“The biological functions of biomolecules are determined by their structures, so we need detailed structural and dynamic insights of PDZ-1 and -2 to help better understand their functional roles and aid in the design of novel inhibitors,” said Feng Ding, Sanabria’s colleague here at Clemson.

A handful of approaches exists to render the structure of biomolecules. But in the case of PSD-95, each approach – NMR spectroscopy, X-ray crystallography and Förster resonance energy transfer (FRET) – delivered a different structural model. The researchers’ collaborator at Stony Brook University, associate professor Mark Bowen in the department of physiology and biophysics, established a partnership with Sanabria on this project after he uncovered one of the inconsistent structural models of the PSD-95 fragment.

Sanabria’s lab addressed this discrepancy by first modeling the PSD-95 fragment using FRET, an approach that identifies possible configurations of biomolecules. Under this method, Sanabria attached two light-sensitive molecules, called chromophores, at two differing positions on the PSD-95 fragment. He then uncovered the distance between the chromophores by visualizing the fragment under a microscope. This was repeated multiple times from different attaching points.

“For the modeling aspect, FRET gives you distances between chromophores, but that’s not enough to fill all of the geometrical restraints of the molecule, so we have to rely on something else, some other methodology. That’s where Professor Ding comes into play,” Sanabria said.

Ding leads a computational biophysics lab at Clemson University where he uses computer software to gauge how biomolecules look, move and function. His approach to modeling utilizes a computer simulation known as discrete molecular dynamics (DMD) that maps the landscape of a biomolecule, predicting the trajectories of proteins as they fold and interact with other molecules. The subsequent simulation can be played back like a movie, helping researchers visualize protein behaviors over time.

“If you do traditional molecular simulations, typically you’re going to sample a very tiny region of the space, particularly for larger molecules, so you’re not going to have a good overview of how the entire molecule will look even in physiological conditions,” Sanabria said. “Discrete molecular dynamics is a much faster and less computationally expensive way to accurately and rapidly sample the conformational space of proteins.”

To do it, Sanabria first obtained a set of distances by measuring PSD-95 with FRET. In that experiment, Sanabria had 10 samples of the PSD-95 fragment that each were rendering different distances and three common shapes – or conformations – of PSD-95 were observed. Yet, without a DMD simulation, there was no way for the researchers to know which distance corresponded to which conformation of the fragment. So they input each possible distance against each possible shape and let the simulation do the rest.

“Once we did the first simulation, we saw that there were three main states that PDZ-1 and -2 were taking. One showed very close contact between the two, one showed a set of intermediate contact and one had no contact whatsoever,” Ding said.

The researchers then ran a DMD simulation again without considering the FRET distances to confirm that the three observed states exist in nature and are not simply a fluke imposed by the FRET distances. They further probed the structures by looking at the way that individual amino acids, which constitute the PDZ domains, bond to one another. From these analyses, Ding, Bowen and Sanabria were able to confirm that the PDZ domains take on two out of the three observed states in the DMD simulation – that with some contact and that with no contact whatsoever.

“Now, we have two potential targets for engineering new drugs that will be more efficient than the ones that are currently available,” Sanabria said. “The outlook for stroke patients is promising.”

Without discrete molecular dynamics, which can capture conformational changes that occur on the microsecond timescale, these two states would have been missed as they were in past studies.

“Most of the people doing FRET-guided structural modeling are working with a rigid molecule, like DNA. If you have a rigid molecule, it’s easy to model – you have only a single state to capture. You can assign the FRET distances and there’s really no problem,” Sanabria said. “In this case, we surpassed this approach in many ways.”

In future studies, the team is looking to analyze the potential for the PSD-95 fragment to auto-inhibit itself based on the fragment’s own structure.

Source:

http://newsstand.clemson.edu/mediarelations/molecule-studies-reveal-potential-treatment-for-stroke-patients/

Tagged with:

About author

Related Articles