Breaking News
May 3, 2019 - Vaping and Smoking May Signal Greater Motivation to Quit
May 3, 2019 - Dementia looks different in brains of Hispanics
May 3, 2019 - Short-Staffed Nursing Homes See Drop In Medicare Ratings
May 3, 2019 - Study of teens with eating disorders explores how substance users differ from non-substance users
May 3, 2019 - Scientists develop new video game that may help in the study of Alzheimer’s
May 3, 2019 - Arc Bio introduces Galileo Pathogen Solution product line at ASM Clinical Virology Symposium
May 3, 2019 - Cornell University study uncovers relationship between starch digestion gene and gut bacteria
May 3, 2019 - How to Safely Use Glucose Meters and Test Strips for Diabetes
May 3, 2019 - Anti-inflammatory drugs ineffective for prevention of Alzheimer’s disease
May 3, 2019 - Study tracks Pennsylvania’s oil and gas waste-disposal practices
May 3, 2019 - Creating a better radiation diagnostic test for astronauts
May 3, 2019 - Vegans are often deficient in these four nutrients
May 3, 2019 - PPDC announces seed grants to develop medical devices for children
May 3, 2019 - Study maps out the frequency and impact of water polo head injuries
May 3, 2019 - Research on Reddit identifies risks associated with unproven treatments for opioid addiction
May 3, 2019 - Good smells may help ease tobacco cravings
May 3, 2019 - Medical financial hardship found to be very common among people in the United States
May 3, 2019 - Researchers develop multimodal system for personalized post-stroke rehabilitation
May 3, 2019 - Study shows significant mortality benefit with CABG over percutaneous coronary intervention
May 3, 2019 - Will gene-editing of human embryos ever be justifiable?
May 3, 2019 - FDA Approves Dengvaxia (dengue vaccine) for the Prevention of Dengue Disease in Endemic Regions
May 3, 2019 - Why Tonsillitis Keeps Coming Back
May 3, 2019 - Fighting the opioid epidemic with data
May 3, 2019 - Maggot sausages may soon be a reality
May 3, 2019 - Deletion of ATDC gene prevents development of pancreatic cancer in mice
May 2, 2019 - Targeted Therapy Promising for Rare Hematologic Cancer
May 2, 2019 - Alzheimer’s disease is a ‘double-prion disorder,’ study shows
May 2, 2019 - Reservoir bugs: How one bacterial menace makes its home in the human stomach
May 2, 2019 - Clinical, Admin Staff From Cardiology Get Sneak Peek at Epic
May 2, 2019 - Depression increases hospital use and mortality in children
May 2, 2019 - Vicon and NOC support CURE International to create first gait lab in Ethiopia
May 2, 2019 - Researchers use 3D printer to make paper organs
May 2, 2019 - Viral infection in utero associated with behavioral abnormalities in offspring
May 2, 2019 - U.S. Teen Opioid Deaths Soaring
May 2, 2019 - Opioid distribution data should be public
May 2, 2019 - In the Spotlight: “I’m learning every single day”
May 2, 2019 - 2019 Schaefer Scholars Announced
May 2, 2019 - Podcast: KHN’s ‘What The Health?’ Bye-Bye, ACA, And Hello ‘Medicare-For-All’?
May 2, 2019 - Study describes new viral molecular evasion mechanism used by cytomegalovirus
May 2, 2019 - SLU study suggests a more equitable way for Medicare reimbursement
May 2, 2019 - Scientists discover first gene involved in lower urinary tract obstruction
May 2, 2019 - Researchers identify 34 genes associated with increased risk of ovarian cancer
May 2, 2019 - Many low-income infants receive formula in the first few days of life, finds study
May 2, 2019 - Global study finds high success rate for hip and knee replacements
May 2, 2019 - Taking depression seriously: What is it?
May 2, 2019 - With Head Injuries Mounting, Will Cities Put Their Feet Down On E-Scooters?
May 2, 2019 - Scientists develop small fluorophores for tracking metabolites in living cells
May 2, 2019 - Study casts new light into how mothers’ and babies’ genes influence birth weight
May 2, 2019 - Researchers uncover new brain mechanisms regulating body weight
May 2, 2019 - Organ-on-chip systems offered to Asia-Pacific regions by Sydney’s AXT
May 2, 2019 - Adoption of new rules drops readmission penalties against safety net hospitals
May 2, 2019 - Kids and teens who consume zero-calorie sweetened beverages do not save calories
May 2, 2019 - Improved procedure for cancer-related erectile dysfunction
May 2, 2019 - Hormone may improve social behavior in autism
May 2, 2019 - Alzheimer’s disease may be caused by infectious proteins called prions
May 2, 2019 - Even Doctors Can’t Navigate Our ‘Broken Health Care System’
May 2, 2019 - Study looks at the impact on criminal persistence of head injuries
May 2, 2019 - Honey ‘as high in sugars as table sugar’
May 2, 2019 - Innovations to U.S. food system could help consumers in choosing healthy foods
May 2, 2019 - FDA Approves Mavyret (glecaprevir and pibrentasvir) as First Treatment for All Genotypes of Hepatitis C in Pediatric Patients
May 2, 2019 - Women underreport prevalence and intensity of their own snoring
May 2, 2019 - Concussion summit focuses on science behind brain injury
May 2, 2019 - Booker’s Argument For Environmental Justice Stays Within The Lines
May 2, 2019 - Cornell research explains increased metastatic cancer risk in diabetics
May 2, 2019 - Mount Sinai study provides fresh insights into cellular pathways that cause cancer
May 2, 2019 - Researchers to study link between prenatal pesticide exposures and childhood ADHD
May 2, 2019 - CoGEN Congress 2019: Speakers’ overviews
May 2, 2019 - A new strategy for managing diabetic macular edema in people with good vision
May 2, 2019 - Sagent Pharmaceuticals Issues Voluntary Nationwide Recall of Ketorolac Tromethamine Injection, USP, 60mg/2mL (30mg per mL) Due to Lack of Sterility Assurance
May 2, 2019 - Screen time associated with behavioral problems in preschoolers
May 2, 2019 - Hormone reduces social impairment in kids with autism | News Center
May 2, 2019 - Researchers synthesize peroxidase-mimicking nanozyme with low cost and superior catalytic activity
May 2, 2019 - Study results of a potential drug to treat Type 2 diabetes in children announced
May 2, 2019 - Multigene test helps doctors to make effective treatment decisions for breast cancer patients
May 2, 2019 - UNC School of Medicine initiative providing unique care to dementia patients
May 2, 2019 - Nestlé Health Science and VHP join forces to launch innovative COPES program for cancer patients
May 2, 2019 - Study examines how our brain generates consciousness and loses it during anesthesia
May 2, 2019 - Transition Support Program May Aid Young Adults With Type 1 Diabetes
May 2, 2019 - Study shows how neutrophils exacerbate atherosclerosis by inducing smooth muscle-cell death
May 2, 2019 - Research reveals complexity of how we make decisions
Massively parallel single-nucleus RNA sequencing reveals insights into heart disease

Massively parallel single-nucleus RNA sequencing reveals insights into heart disease

CHOP Researcher: Massively Parallel Single-Nucleus Sequencing Offers Key Tool for Cardiac Biology and Heart Disease

Scientists using a powerful new technology that sequences RNA in 20,000 individual cell nuclei have uncovered new insights into biological events in heart disease. In animal studies, the researchers identified a broad variety of cell types in both healthy and diseased hearts, and investigated in rich detail the “transcriptional landscape,” in which DNA transfers genetic information into RNA and proteins.

“This is the first time to our knowledge that massively parallel single-nucleus RNA sequencing has been applied to postnatal mouse hearts, and it provides a wealth of detail about biological events in both normal heart development and heart disease,” said study leader Liming Pei, PhD, a molecular biologist in the Center for Mitochondrial and Epigenomic Medicine(CMEM) at Children’s Hospital of Philadelphia (CHOP) and an assistant professor in the Department of Pathology and Laboratory Medicine in the Perelman School of Medicine at the University of Pennsylvania. “Ultimately, our goal is to use this knowledge to discover new targeted treatments for heart disease. In addition, this type of large-scale sequencing may be broadly applied in many other fields of medicine.”

Pei and co-study leader HaoWu, PhD, also of the CMEM and an assistant professor of Genetics at Penn Medicine, published their findings online Sept. 25, 2018 in Genes & Development.

While massively parallel single-cell RNA sequencing (scRNA-seq) has been available to researchers in the past three years, it is technically challenging to study single cells in postnatal hearts due to the large size of cardiac muscle cells.

To enable single-cell analysis of large cells such as muscle cells, or cells with complex morphology such as neurons, robust massively parallel single-nucleus sequencing (snRNA-seq) methods have been developed recently in Wu’s laboratory, as well as by others in the field. To date, massively parallel snRNA-seq has been applied only to the central nervous system. Pei and colleagues are the first to adapt the technology for use in postnatal heart tissue.

The research team used the snRNA-Seq method termed sNucDrop-seq to analyze nearly 20,000 nuclei in heart tissue from normal and diseased mice. “We are excited to further develop sNucDrop-seq and apply it to mammalian postnatal hearts, which are of critical medical relevance but difficult to study with standard scRNA-seq,” said Wu.

The current study focused on cardiomyopathy, a group of diseases characterized by progressive weakening of the heart muscle, and representing aleading worldwide cause of heart failure. Pei and colleagues used mice developed to model a type of pediatric mitochondrial cardiomyopathy.

“The heart is a complex organ, with a multitude of cell types, and much still remains poorly understood about mammalian heart development and heart disease, especially during the postnatal period,” said Pei.“Our study provides key insights in three areas: normal heart development, heart disease, and gene regulatory mechanisms of a heart hormone called GDF15.”

The sequencing tool identified major types of heart cells, such as cardiomyocytes, fibroblasts and endothelial cells, as well as rarer cardiac cell types. The study team found great variety among each cell type, as well as indications of functional changes in the heart cells during both normal and diseased conditions. For example, the researchers detectedmetabolic changes in fibroblasts, the fibrous cells that make the heart abnormally stiff in heart disease.

Another finding concerned gene networks that regulate production of cardiac hormones in heart disease—specifically GDF15,which slows overallbody growth, presumably to reduce the energetic demands on a damaged heart. Such signaling, said Pei, could reveal more about the biological mechanisms that underlie the growth restriction commonly seen in children with congenital heart disease.

Greater understanding of cardiac biology, as provided in this research, said Pei, may lead to targeted therapies aimed at key gene networks that could offer better treatments for heart patients.

“This research was a first step in defining the transcriptional landscape of normal and diseased heart at high resolution,” said Pei, who added that future work in his and his collaborator’s laboratory will investigate how heart disease progresses over a longer timespan than the early postnatal period. The research tool may also offer opportunities to investigate diseases in organs and systems beyond the heart.

Source:

https://www.chop.edu/news/sequencing-20000-heart-cells-yields-insights-cardiac-disease

Tagged with:

About author

Related Articles