Breaking News
December 13, 2018 - Single tau molecule holds clues to help diagnose neurodegeneration in its earliest stages
December 13, 2018 - AHA Scientific Statement: Low Risk of Side Effects for Statins
December 13, 2018 - What Is Acute Flaccid Myelitis?
December 13, 2018 - How bereaved people control their thoughts without knowing it
December 13, 2018 - Health care democratization underway, according to 2nd annual Stanford Medicine Health Trends Report | News Center
December 13, 2018 - Going Beyond a Single Color
December 13, 2018 - London-based startup launches ‘thedrug.store’ aiming to clean up CBD industry
December 13, 2018 - Loss of tight junction barrier protein results in gastric cancer development
December 13, 2018 - Novel way to efficiently deliver anti-parasitic medicines
December 13, 2018 - RKI publishes new data on disease prevention and utilization of medical services
December 13, 2018 - High-tech, flexible patches sewn into clothes could help to stay warm
December 13, 2018 - Restoring Hair Growth on Scarred Skin? Mouse Study Could Show the Way
December 13, 2018 - Probiotic use may reduce antibiotic prescriptions, researchers say
December 13, 2018 - Drug repositioning strategy identifies potential new treatments for epilepsy
December 13, 2018 - Chronic rhinitis associated with hospital readmissions for asthma and COPD patients
December 13, 2018 - Food poisoning discovery could save lives
December 13, 2018 - Cloned antibodies show potential to treat, diagnose life-threatening fungal infections
December 13, 2018 - Exercise may reduce colorectal cancer risk after weight loss
December 13, 2018 - Russian scientists create hardware-information system for brain disorders treatment
December 13, 2018 - Moderate alcohol consumption linked with lower risk of hospitalization
December 13, 2018 - Nurturing Healthy Neighborhoods | NIH News in Health
December 13, 2018 - Rise in meth and opioid use during pregnancy
December 13, 2018 - Researchers gain new insights into pediatric tumors
December 13, 2018 - FSU study finds racial disparity among adolescents receiving flu vaccine
December 13, 2018 - Drug cocktail induces cancer cell death by switching off energy supply
December 13, 2018 - Baculovirus virion completely eliminates liver-stage parasites in mouse model
December 13, 2018 - Researchers create noninvasive technology that detects when nerve cells fire
December 13, 2018 - Allen Institute for Immunology to partner with CU Anschutz to understand dynamics of human immune system
December 13, 2018 - Inability to do daily living tasks delays discharge of mental health patients
December 13, 2018 - Treating patients with hypertension induced albuminuria
December 13, 2018 - New substance could improve efficacy of established breast cancer treatments
December 13, 2018 - Scientists develop new stem cell line to study conversion of stem cells into muscle
December 13, 2018 - Re-programming the body’s energy pathway boosts kidney self-repair
December 13, 2018 - Research findings could help improve treatment of anxiety and post-traumatic stress disorders
December 13, 2018 - The Microbiome Movement announce Microbiotica as official industry partner
December 13, 2018 - New study reveals potential benefits of cEEG monitoring for infant ICU patients
December 13, 2018 - Whole-body imaging PET/MRI offers information to guide treatment options for prostate cancer
December 13, 2018 - International investigators fight against the negative campaign on benzodiazepines
December 13, 2018 - Targeting biochemical pathway may lead to new therapies for alleviating symptoms of anxiety disorders
December 13, 2018 - FDA Approves Tolsura (SUBA®-itraconazole capsules) for the Treatment of Certain Fungal Infections
December 13, 2018 - Are scientists studying the wrong kind of mice?
December 13, 2018 - Computer memory: A scientific team builds a virtual model of a key brain region
December 13, 2018 - Visual inspection alone is insufficient to diagnose skin cancer
December 13, 2018 - Paternal grandfather’s access to food associated with grandson’s mortality risk
December 13, 2018 - Our brain senses angry voices in a flash, study shows
December 13, 2018 - PM2.5 Exposure Linked to Asthma Rescue Medication Use
December 13, 2018 - Can’t exercise? A hot bath may help improve inflammation, metabolism, study suggests
December 13, 2018 - Can artificial intelligence help doctors with the human side of medicine?
December 13, 2018 - Virginia Tech and UC San Diego researchers team up to develop nonopioid drug for chronic pain
December 13, 2018 - NIH offers support for HIV care and prevention research in the southern United States
December 12, 2018 - Activating brain region could revive the urge to socialize among opioid addicts
December 12, 2018 - Relationship impairment appears to interfere with seeking mental health treatment in men
December 12, 2018 - Sleep, Don’t Cram, Before Finals for Better Grades
December 12, 2018 - Effective treatments for urticarial vasculitis
December 12, 2018 - Gun violence is a public health issue: One physician’s story
December 12, 2018 - The Science of Healthy Aging
December 12, 2018 - Yes to yoghurt and cheese: New improved Mediterranean diet
December 12, 2018 - Researchers uncover a number of previously unknown insecticide resistance mechanisms
December 12, 2018 - Regulating the immune system’s ‘regulator’
December 12, 2018 - In breaking bad news, the comfort of silence
December 12, 2018 - Study finds upward link between alcohol consumption and physical activity in college students
December 12, 2018 - FDA issues warning letter to Zhejiang Huahai Pharmaceutical involved in valsartan recall
December 12, 2018 - Weight history at ages 20 and 40 could help predict patients’ future risk of heart failure
December 12, 2018 - Presence of antiphospholipid antibodies tied to first-time MI
December 12, 2018 - DNA analysis finds that stethoscopes are teaming with bacteria
December 12, 2018 - New study could help inform research on preventing falls
December 12, 2018 - Women and men with heart attack symptoms receive different care from EMS
December 12, 2018 - Disrupted biological clock can contribute to onset of diseases, USC study shows
December 12, 2018 - New publications generate controversy over the value of reducing salt consumption in populations
December 12, 2018 - New data from TAILORx trial confirms lack of chemo benefit regardless of race or ethnicity
December 12, 2018 - Specific class of biomarkers can accurately indicate the severity of cancer
December 12, 2018 - Meds Taken Do Not Vary With ADL Impairment in Heart Failure
December 12, 2018 - Long-term study shows that HIV-2 is deadlier than previously thought
December 12, 2018 - People living near oil and gas wells show early signs of cardiovascular disease
December 12, 2018 - IONTAS founder and pioneer in phage display technology attends Nobel Prize Award Ceremony
December 12, 2018 - People who eat red meat have high levels of chemical associated with heart disease, study finds
December 12, 2018 - New method uses water molecules to unlock neurons’ secrets
December 12, 2018 - Genetics study offers hope for new acne treatment
December 12, 2018 - New computer model predicts prostate cancer progression
December 12, 2018 - Nobel Laureates lecture about immune checkpoint therapy for cancer treatment
New accelerator-based technology aims to reduce side effects of cancer radiation therapy

New accelerator-based technology aims to reduce side effects of cancer radiation therapy

image_pdfDownload PDFimage_print

New accelerator-based technology being developed by the Department of Energy’s SLAC National Accelerator Laboratory and Stanford University aims to reduce the side effects of cancer radiation therapy by shrinking its duration from minutes to under a second. Built into future compact medical devices, technology developed for high-energy physics could also help make radiation therapy more accessible around the world.

Now, the SLAC/Stanford team has received crucial funding to proceed with two projects to develop possible treatments for tumors – one using X-rays, the other using protons. The idea behind both is to blast cancer cells so quickly that organs and other tissues don’t have time to move during the exposure – much like taking a single freeze frame from a video. This reduces the chance that radiation will hit and damage healthy tissue around tumors, making radiation therapy more precise.

“Delivering the radiation dose of an entire therapy session with a single flash lasting less than a second would be the ultimate way of managing the constant motion of organs and tissues, and a major advance compared with methods we’re using today,” said Billy Loo, an associate professor of radiation oncology at the Stanford School of Medicine.

Sami Tantawi, a professor of particle physics and astrophysics and the chief scientist for the RF Accelerator Research Division in SLAC’s Technology Innovation Directorate, who works with Loo on both projects, said, “In order to deliver high-intensity radiation efficiently enough, we need accelerator structures that are hundreds of times more powerful than today’s technology. The funding we received will help us build these structures.”

Blasting cancer with X-rays

The project called PHASER will develop a flash delivery system for X-rays.

In today’s medical devices, electrons fly through a tube-like accelerator structure that’s about a meter long, gaining energy from a radiofrequency field that travels through the tube at the same time and in the same direction. The energy of the electrons then gets converted into X-rays. Over the past few years, the PHASER team has developed and tested accelerator prototypes with special shapes and new ways of feeding radiofrequency fields into the tube. These components are already performing as predicted by simulations and pave the way for accelerator designs that support more power in a compact size.

“Next, we’ll build the accelerator structure and test the risks of the technology, which, in three to five years, could lead to a first actual device that can eventually be used in clinical trials,” Tantawi said.

The Stanford Department of Radiation Oncology will provide about $1 million over the next year for these efforts and support a campaign to raise more research funding. The Department of Radiation Oncology, in collaboration with the School of Medicine, has also established the Radiation Science Center focusing on precision radiation treatment. Its PHASER division, co-led by Loo and Tantawi, aims to turn the PHASER concept into a functional device.

Making proton therapy more agile

In principle, protons are less harmful to healthy tissue than X-rays because they deposit their tumor-killing energy in a more confined volume inside the body. However, proton therapy requires large facilities to accelerate protons and adjust their energy. It also uses magnets weighing hundreds of tons that slowly move around a patient’s body to guide the beam into the target.

“We want to come up with innovative ways to manipulate the proton beam that will make future devices simpler, more compact and much faster,” said Emilio Nanni, a staff scientist at SLAC, who leads the project with Tantawi and Loo.

That goal could soon be within reach, thanks to a recent $1.7 million grant from the DOE Office of Science Accelerator Stewardship program to develop the technology over the next three years.

“We can now move forward with designing, fabricating and testing an accelerator structure similar to the one in the PHASER project that will be capable of steering the proton beam, tuning its energy and delivering high radiation doses practically instantaneously,” Nanni said.

Quick, effective and accessible

In addition to making cancer therapy more precise, flash delivery of radiation also appears to have other benefits.

“We’ve seen in mice that healthy cells suffer less damage when we apply the radiation dose very quickly, and yet the tumor-killing effect is equal to or even a little bit better than that of a conventional longer exposure,” Loo said. “If the result holds for humans, it would be a whole new paradigm for the field of radiation therapy.”

Another key objective of the projects is to make radiation therapy more accessible for patients worldwide.

Today, millions of patients around the world receive only palliative care because they don’t have access to cancer therapy, Loo said. “We hope that our work will contribute to making the best possible treatment available to more patients in more places.”

That’s why the team is focusing on designing systems that are compact, power-efficient, economical, efficient to use in the clinical setting, and compatible with existing infrastructure around the world, Tantawi said: “The first broadly used medical linear accelerator design was invented and built at Stanford in the years leading up to the building of SLAC. The next generation could be a real game changer – in medicine and in other areas, such as accelerators for X-ray lasers, particle colliders and national security.”

Peter Maxim at Stanford (now director of radiation oncology physics at Indiana University) is a co-inventor of PHASER and made key contributions to both projects. Additional members on the proton therapy team are Reinhard Schulte at Loma Linda University and Matthew Murphy at Varian Medical Systems.

Source:

https://www6.slac.stanford.edu/news/2018-11-28-future-fighting-cancer-zapping-tumors-less-second.aspx

About author

Related Articles