Breaking News
May 3, 2019 - Vaping and Smoking May Signal Greater Motivation to Quit
May 3, 2019 - Dementia looks different in brains of Hispanics
May 3, 2019 - Short-Staffed Nursing Homes See Drop In Medicare Ratings
May 3, 2019 - Study of teens with eating disorders explores how substance users differ from non-substance users
May 3, 2019 - Scientists develop new video game that may help in the study of Alzheimer’s
May 3, 2019 - Arc Bio introduces Galileo Pathogen Solution product line at ASM Clinical Virology Symposium
May 3, 2019 - Cornell University study uncovers relationship between starch digestion gene and gut bacteria
May 3, 2019 - How to Safely Use Glucose Meters and Test Strips for Diabetes
May 3, 2019 - Anti-inflammatory drugs ineffective for prevention of Alzheimer’s disease
May 3, 2019 - Study tracks Pennsylvania’s oil and gas waste-disposal practices
May 3, 2019 - Creating a better radiation diagnostic test for astronauts
May 3, 2019 - Vegans are often deficient in these four nutrients
May 3, 2019 - PPDC announces seed grants to develop medical devices for children
May 3, 2019 - Study maps out the frequency and impact of water polo head injuries
May 3, 2019 - Research on Reddit identifies risks associated with unproven treatments for opioid addiction
May 3, 2019 - Good smells may help ease tobacco cravings
May 3, 2019 - Medical financial hardship found to be very common among people in the United States
May 3, 2019 - Researchers develop multimodal system for personalized post-stroke rehabilitation
May 3, 2019 - Study shows significant mortality benefit with CABG over percutaneous coronary intervention
May 3, 2019 - Will gene-editing of human embryos ever be justifiable?
May 3, 2019 - FDA Approves Dengvaxia (dengue vaccine) for the Prevention of Dengue Disease in Endemic Regions
May 3, 2019 - Why Tonsillitis Keeps Coming Back
May 3, 2019 - Fighting the opioid epidemic with data
May 3, 2019 - Maggot sausages may soon be a reality
May 3, 2019 - Deletion of ATDC gene prevents development of pancreatic cancer in mice
May 2, 2019 - Targeted Therapy Promising for Rare Hematologic Cancer
May 2, 2019 - Alzheimer’s disease is a ‘double-prion disorder,’ study shows
May 2, 2019 - Reservoir bugs: How one bacterial menace makes its home in the human stomach
May 2, 2019 - Clinical, Admin Staff From Cardiology Get Sneak Peek at Epic
May 2, 2019 - Depression increases hospital use and mortality in children
May 2, 2019 - Vicon and NOC support CURE International to create first gait lab in Ethiopia
May 2, 2019 - Researchers use 3D printer to make paper organs
May 2, 2019 - Viral infection in utero associated with behavioral abnormalities in offspring
May 2, 2019 - U.S. Teen Opioid Deaths Soaring
May 2, 2019 - Opioid distribution data should be public
May 2, 2019 - In the Spotlight: “I’m learning every single day”
May 2, 2019 - 2019 Schaefer Scholars Announced
May 2, 2019 - Podcast: KHN’s ‘What The Health?’ Bye-Bye, ACA, And Hello ‘Medicare-For-All’?
May 2, 2019 - Study describes new viral molecular evasion mechanism used by cytomegalovirus
May 2, 2019 - SLU study suggests a more equitable way for Medicare reimbursement
May 2, 2019 - Scientists discover first gene involved in lower urinary tract obstruction
May 2, 2019 - Researchers identify 34 genes associated with increased risk of ovarian cancer
May 2, 2019 - Many low-income infants receive formula in the first few days of life, finds study
May 2, 2019 - Global study finds high success rate for hip and knee replacements
May 2, 2019 - Taking depression seriously: What is it?
May 2, 2019 - With Head Injuries Mounting, Will Cities Put Their Feet Down On E-Scooters?
May 2, 2019 - Scientists develop small fluorophores for tracking metabolites in living cells
May 2, 2019 - Study casts new light into how mothers’ and babies’ genes influence birth weight
May 2, 2019 - Researchers uncover new brain mechanisms regulating body weight
May 2, 2019 - Organ-on-chip systems offered to Asia-Pacific regions by Sydney’s AXT
May 2, 2019 - Adoption of new rules drops readmission penalties against safety net hospitals
May 2, 2019 - Kids and teens who consume zero-calorie sweetened beverages do not save calories
May 2, 2019 - Improved procedure for cancer-related erectile dysfunction
May 2, 2019 - Hormone may improve social behavior in autism
May 2, 2019 - Alzheimer’s disease may be caused by infectious proteins called prions
May 2, 2019 - Even Doctors Can’t Navigate Our ‘Broken Health Care System’
May 2, 2019 - Study looks at the impact on criminal persistence of head injuries
May 2, 2019 - Honey ‘as high in sugars as table sugar’
May 2, 2019 - Innovations to U.S. food system could help consumers in choosing healthy foods
May 2, 2019 - FDA Approves Mavyret (glecaprevir and pibrentasvir) as First Treatment for All Genotypes of Hepatitis C in Pediatric Patients
May 2, 2019 - Women underreport prevalence and intensity of their own snoring
May 2, 2019 - Concussion summit focuses on science behind brain injury
May 2, 2019 - Booker’s Argument For Environmental Justice Stays Within The Lines
May 2, 2019 - Cornell research explains increased metastatic cancer risk in diabetics
May 2, 2019 - Mount Sinai study provides fresh insights into cellular pathways that cause cancer
May 2, 2019 - Researchers to study link between prenatal pesticide exposures and childhood ADHD
May 2, 2019 - CoGEN Congress 2019: Speakers’ overviews
May 2, 2019 - A new strategy for managing diabetic macular edema in people with good vision
May 2, 2019 - Sagent Pharmaceuticals Issues Voluntary Nationwide Recall of Ketorolac Tromethamine Injection, USP, 60mg/2mL (30mg per mL) Due to Lack of Sterility Assurance
May 2, 2019 - Screen time associated with behavioral problems in preschoolers
May 2, 2019 - Hormone reduces social impairment in kids with autism | News Center
May 2, 2019 - Researchers synthesize peroxidase-mimicking nanozyme with low cost and superior catalytic activity
May 2, 2019 - Study results of a potential drug to treat Type 2 diabetes in children announced
May 2, 2019 - Multigene test helps doctors to make effective treatment decisions for breast cancer patients
May 2, 2019 - UNC School of Medicine initiative providing unique care to dementia patients
May 2, 2019 - Nestlé Health Science and VHP join forces to launch innovative COPES program for cancer patients
May 2, 2019 - Study examines how our brain generates consciousness and loses it during anesthesia
May 2, 2019 - Transition Support Program May Aid Young Adults With Type 1 Diabetes
May 2, 2019 - Study shows how neutrophils exacerbate atherosclerosis by inducing smooth muscle-cell death
May 2, 2019 - Research reveals complexity of how we make decisions
Promising class of photonic sensors can be used in high-radiation environments

Promising class of photonic sensors can be used in high-radiation environments

Researchers at the National Institute of Standards and Technology (NIST) have published landmark test results that suggest a promising class of sensors can be used in high-radiation environments and to advance important medical, industrial and research applications.

Photonic sensors convey information with light instead of electric currents in wires. They can measure, transmit and manipulate streams of photons, typically through optical fibers, and are used to gauge pressure, temperature, distance, magnetic fields, environmental conditions and more.

They are attractive because of their small size, low power consumption and tolerance of environmental variables such as mechanical vibration. But the general consensus has been that high levels of radiation would modify the optical properties of their silicon, leading to incorrect readings.

So NIST, long a world leader in many areas of photonics research, launched a program to answer those questions. The test results indicate the sensors could be customized for measuring radiation dose in both industrial applications and clinical radiotherapy. The results of its first round of testing is reported in Nature Scientific Reports.

Specifically, the NIST results suggest the sensors could be used to track levels of ionizing radiation (with energy high enough to alter the structure of atoms) used in food irradiation to destroy microbes and in medical device sterilization–estimated to be a $7 billion annual market in the U.S. alone. The sensors also have potential applications in medical imaging and therapy, which together are projected to total nearly $50 billion in annual value worldwide by 2022.

“When we looked at publications on the subject, different labs were getting dramatically different results,” said project scientist Zeeshan Ahmed, who is part of NIST’s Photonic Dosimetry Project and leader of NIST’s cutting-edge Photonic Thermometry Project. “That was our main motivation for doing our experiment.”

“Another motivation was the growing interest in deploying photonic sensors that can function accurately in very harsh environments, such as close to nuclear reactors, where radiation damage is a major concern,” Ahmed said. “In addition, the space industry needs to know how these devices would function in high-radiation environments,” said project scientist Ronald Tosh. “Are they going to get damaged or not? What this study shows is that for a certain class of devices and radiation, the damage is negligible.”

“We found that oxide-coated silicon photonic devices can withstand radiation exposure up to 1 million gray,” said Photonic Dosimetry project leader Ryan Fitzgerald, using the SI unit for absorbed radiation. One gray represents one joule of energy absorbed by one kilogram of mass, and 1 gray corresponds to 10,000 chest X-rays. This is roughly what a sensor would receive at a nuclear power plant.

“It’s the upper limit of what our calibrations customers care about,” Fitzgerald said. “So the devices can be assumed to work reliably at industrial or medical radiation levels that are hundreds or thousands of times lower.” Food irradiation, for example, ranges from a few hundred to a few thousand gray, and is typically monitored by its effects on pellets of alanine, an amino acid that changes its atomic properties when exposed to ionizing radiation.

To determine the effects of radiation, the NIST researchers exposed two kinds of silicon photonic sensors to hours of gamma radiation from cobalt-60, a radioactive isotope. In both types of sensors, small variations in their physical properties change the wavelength of the light that travels through them. By measuring those changes, the devices can be used as highly sensitive thermometers or strain gauges. This remains true in extreme environments like space flight or nuclear reactors, only if they continue to function properly under exposure to ionizing radiation.

“Our results show that these photonic devices are robust in even extreme radiation environments, which suggests they could be also used to measure radiation via its effects on physical properties of irradiated devices,” Fitzgerald said. “That should come as good news for U.S. manufacturing, which is anxious to serve the large and growing market for precise delivery of radiation at very small length scales. Photonic sensors could then be developed to measure low-energy electron and X-ray beams used in medical device sterilization and food irradiation.”

They will also be of great interest to clinical medicine, in which physicians strive to treat cancers and other conditions with the lowest effective levels of radiation focused on the smallest dimensions to avoid affecting healthy tissue, including electron, proton and ion beams. Reaching that goal demands radiation sensors with extraordinarily high sensitivity and spatial resolution. “Eventually, we hope to develop chip-scale devices for industrial and medical applications that can determine absorbed dose gradients over distances in the range of micrometers and thus provide unprecedented detail in measurements,” said project scientist Nikolai Klimov. A micrometer is a millionth of a meter. A human hair is about 100 micrometers wide.

The team’s results may have large implications for new medical therapies that employ extremely narrow beams of protons or carbon ions and medical sterilization processes that use low-energy beams of electrons. “Our sensors are naturally small and chip-scale,” Fitzgerald said. “Current dosimeters are on the order of millimeters to centimeters, which can give erroneous readings for fields that vary over those dimensions.”

In the next stage of the research, the team will test arrays of sensors simultaneously in identical conditions to see if variations in dose over small distances can be resolved.

Source:

https://www.nist.gov/news-events/news/2018/11/photonic-radiation-sensors-survive-huge-doses-undamaged

Tagged with:

About author

Related Articles